





## **Top Leaders Community Detection Approach in Information Networks**

Reihaneh Rabbany Khorasgani, Jiyang Chen, Osmar R. Zaïane

Department of Computing Science University of Alberta Edmonton, Alberta, Canada T6G 2E8 {rabbanyk, jiyang, zaiane}@cs.ualberta.ca

4<sup>th</sup> SNA-KDD Workshop on Social Network Mining and Analysis – Washington DC,

### What is Community Structure?

- Community structure denotes the existence of densely connected groups of nodes, with only sparser connections between groups.
- Many social networks share the property of a community structure, e.g., WWW, tele-communication networks, academic collaboration networks, friendship networks, etc.



Many similarities with data Clustering

#### **Outline**

- Introduction
- Some related work
  - Graph Partitioning, Modularity Q and others
- Top Leaders
  - Problem Definition
  - Associating nodes to Leaders
  - Initialization of the leaders
  - Experiments
- Conclusions

#### Introduction

- A new Approach for Finding Communities in the Networks
  - Densely connected nodes with sparse connections outside the group
- Community: set of followers congregating around a potential leader
- Algorithm: similar in spirit to k-means
  - starts by identifying promising leaders in the network
  - o iteratively until convergence
    - assembles followers to their closest leaders to form communities
    - finds new leaders in each group around which to gather followers again

#### Related Work

- Graph partitioning and spectral clustering approaches
  - dividing the network into groups with (roughly) <u>equal size</u>, while minimizing the number of edges that run between vertices in different groups
- Q-modularity by Newman 2004
  - measure of the quality of a particular division of a network
- CFinder by Palla et al. 2005
  - o community: union of complete subgraphs of size k
  - o k between 3 and 5: very effective on real networks
- SCAN by Xu et al. 2007
  - nodes that are structurally reachable from each other are grouped together in the same community

#### **Problem Definition**

- Finding leaders and their followers in the network to form the communities
- Leader: The central/influential node
- Community: Set of followers surrounding a leader
- Assigning followers to closest leader based on the intersection of their neighborhoud

## Top Leaders Approach

A leader is the most central member in a community

```
Algorithm 1 Top Leaders algorithm
Input: A social network G, and k the number of desired
communities
  initialize k leaders
  repeat
     {finding communities}
    for all Node n \in G do
      if n \notin leaders then
         associate n to a leader {Algorithm 2}
      end if
    end for
    {updating leaders}
    for all l \in leaders do
      l \leftarrow \arg\max_{n \in Community(l)} Centrality(n)
    end for
  until there is no change in the leaders
```

## Associating Nodes to Leaders

```
Algorithm 2 Associate n to its leader

Input: Social network G, node n, set of k leaders
```

 $depth \leftarrow 1$   $CanList \leftarrow leaders$  repeat

```
\operatorname{CanList} \leftarrow \underset{\substack{c \in CandList \land \\ |\aleph(n_1,d) \cap \aleph(n_2,d)| > \gamma}}{\operatorname{arg\,max}} |\aleph(n_1,d) \cap \aleph(n_2,d)|
```

```
depth ← depth+1
until |CanList|≤ 1 \lor depth > \delta
```

if |CanList| = 0 then {No candidate leader}
associate n as an outlier

else if |CanList| > 1 then {Many candidates} associate n as a hub

else {Only one candidate leader in CanList}
associate n to CanList

end if

Community membership of the nodes is association of followers to nearby leaders



## Top Leaders Approach

A leader is the most central member in a community

```
Algorithm 1 Top Leaders algorithm
Input: A social network G, and k the number of desired
communities
  initialize k leaders
  repeat
     {finding communities}
    for all Node n \in G do
      if n \notin leaders then
         associate n to a leader {Algorithm 2}
       end if
    end for
     {updating leaders}
    for all l \in leaders do
      l \leftarrow \arg\max_{n \in Community(l)} Centrality(n)
    end for
  until there is no change in the leaders
```

#### **Initialization Methods**

#### Wrong leaders may get stuck in a bad local optimum

- Naïve Initialization
  - random selection of k nodes from the network
- Top Global Leaders
  - k most central nodes in the network
- Top Leaders & not Direct Neighbour
  - the k most central nodes that are not directly connected to each other
  - avoid choosing two correct leaders that are directly connected but truly in different communities
- Top leaders & Few Neighbours in Common
  - o based on intersections, similar to followers association

## **Experiments and Datasets**

#### Competitors

- three of other well-known community detection methods
  - SCAN (KDD 2007), CFinder (Nature 2005) and FastModularity (2004)

#### **Datasets**

Karate-Club dataset
 34 nodes in 2 communities



Sawmill Strike dataset
 24 nodes in 3 communities



Football dataset
 180 nodes in 11 communities



#### **Evaluation Metrics**

- Comparing with Ground Truth
  - Purity
    - the number of correctly assigned nodes divided by the total number of nodes. 0 (no agreement at all) to 1 (full agreement).
  - Adjusted Rand Index (ARI)
    - penalizes false negatives and false positives. -1 (no agreement at all) and
       1 (full agreement), 0 (no better than random)
- Modularity
  - how well the edges fall within the detected communities compared to a randomized network. 0 (no different than a randomized network), > 0.3 (good partition)

## Comparing Initialization Methods

- Naïve
- Top Global Leaders (TGL)
- Top Leaders & not Direct Neighbour (TL&NDN)
- Top Leaders & Few Neighbours in Common (TL&FNiC)

| method  | dataset  | ARI             | purity        | Q               |
|---------|----------|-----------------|---------------|-----------------|
|         | Karate   | $.80 \pm .33$   | $.90 \pm .20$ | $.28 \pm .13$   |
| Naïve   | Strike   | $.59 {\pm} .25$ | $.81 \pm .13$ | $.41 {\pm} .12$ |
|         | Football | $.39 \pm .12$   | $.66 \pm .08$ | $.27 \pm .07$   |
| TGL     | Karate   | 1.0             | 1.0           | 0.37            |
|         | Strike   | 1.0             | 1.0           | .54             |
|         | Football | .83             | .88           | .43             |
| TL&NDN  | Karate   | 1.0             | 1.0           | 0.37            |
|         | Strike   | 1.0             | 1.0           | .54             |
|         | Football | .78             | .88           | .42             |
| TL&FNiC | Karate   | 1.0             | 1.0           | 0.37            |
|         | Strike   | 1.0             | 1.0           | .54             |
|         | Football | .98             | .97           | .51             |

#### **Karate Club**





#### Strike





#### Football, Naïve Initialization

ARI: 0.8±0.3



# Visualized Results Football, Top Global Leaders

ARI: 0.83



# Visualized Results Football, TL & Not Direct Neighbour

ARI: 0.78



#### Football, TL & Few Neighbour in Common

ARI: 0.98



## Comparing with other approaches

- Given the correct initial k, TopLeaders always provides the best result.
- The other methods do not always find the correct k but even when seeded to Top Leaders, our approach improved the quality of the found communities based on ARI.

| dataset                  | method         | k  | ARI  | purity | Q     |
|--------------------------|----------------|----|------|--------|-------|
| Karate<br>2 groups       | fastModularity | 3  | .680 | .970   | .380  |
|                          | cFinder        | 3  | .705 | .065   | .182  |
|                          | TopLeader(3)   |    | .838 | 1.0    | .374  |
|                          | SCAN           | 4  | .314 | .764   | .312  |
|                          | TopLeader(4)   |    | .788 | 1.0    | .361  |
|                          | TopLeader(2)   |    | 1.0  | 1.0    | .371  |
| Strike<br>3 groups       | fastModularity | 4  | .664 | .958   | .555  |
|                          | TopLeader(4)   |    | .935 | 1.0    | .532  |
|                          | cFinder        | 6  | .348 | 1.0    | .485  |
|                          | TopLeader(6)   |    | .609 | 1.0    | .457  |
|                          | SCAN           | 3  | .848 | .958   | .547  |
|                          | TopLeader(3)   |    | 1.0  | 1.0    | 0.548 |
| Football<br>11<br>groups | fastModularity | 7  | .206 | .427   | .567  |
|                          | TopLeader(7)   |    | .637 | .783   | .394  |
|                          | cFinder        | 12 | .983 | .913   | .532  |
|                          | TopLeader(12)  |    | .993 | .977   | .511  |
|                          | SCAN           | 11 | 1.0  | 1.0    | .501  |
|                          | TopLeader(11)  |    | .988 | .977   | .513  |

#### Conclusion

- A novel algorithm to mine communities, which assigns nodes to leaders of communities and selects the leaders of communities iteratively.
- Effective in discovering communities and also in identifying outliers in a network.
- Requires k, the number of desired communities as input. However, it is possible to obtain k after running other contenders and provide the number of discovered communities to our algorithm;
  - Our experimental results showed that communities obtained in this way are more accurate than the original discovered communities even if the used method detected wrong number of communities.

#### Questions?