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Abstract. Given a social-affiliation network – a friendship graph where users
have many, binary attributes e.g., check-ins, page likes or group memberships –
what rules do its structural properties such as edge or triangle counts follow, in
relation to its attributes? More challengingly, how can we synthetically gener-
ate realistic networks which provably satisfy those rules or patterns? Our work
attempts to answer the above closely-related questions in the context of the in-
creasingly prevalent social-affiliation graphs. Our contributions are two-fold: (a)
Patterns: we discover three new rules (power laws) in the properties of attribute-
induced subgraphs, substructures which connect the friendship structure to affil-
iations; (b) Model: we propose SOAR– short for SOcial-Affiliation graphs via
Recursion– a stochastic model based on recursion and self-similarity, to provably
generate graphs obeying the observed patterns. Experiments show that: (i) the
discovered rules are useful in detecting deviations as anomalies and (ii) SOAR
is fast and scales linearly with network size, producing graphs with millions of
edges and attributes in only a few seconds.
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1 Introduction

With the proliferation of the web and online social networks, social-affiliation networks
– social/friendship networks where users have many, binary attributes/affiliations – have
become increasingly common. Examples include social networking sites such as Face-
book and Google+ which record user engagement, e.g., pages liked (attributes are pages
– yes if liked, no if not), media-sharing social platforms such as Flickr and Youtube
where users can form groups based on their interests (attributes are groups – yes if
member, no if not), location-based social networks like GOWALLA where users can
check-in at a location they physically visit (attributes are locations – yes if visited).

We consider two closely-related research questions concerning these networks: [RQ1]
What rules (patterns) do the various structural properties of social-affiliation graphs –
e.g., edge or triangle count – follow, in relation to its attributes? [RQ2] How can we
? Work performed while at Carnegie Mellon University.
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synthetically generate realistic networks which provably satisfy these patterns? These
questions fall under the umbrella of pattern analysis and modeling, a well-explored re-
search area and a standard practice in understanding real-world graphs [6, 17, 16, 19].

Our interest in considering the above research questions stems in part from the
scientific and practical impact that the works on pattern analysis and modeling have
had in the past. The discoveries of the scale-free property (skewed degree distributions
[10]) and the small world property (small graph diameters [28]) and respectively their
preferential-attachment [4] and forest-fire [19] models, for instance, have had numerous
applications in graph algorithm design, anomaly detection, graph sampling, summariza-
tion and more [3, 18].

While works on patterns and models for non-attributed graphs abound in the litera-
ture, studies dealing with social-affiliation networks are somewhat limited [29, 14] (see
Sec. 2 for details). Our work complements these by discovering rules which the struc-
tural properties of social-affiliation graphs follow in relation to their attributes. Specif-
ically, we study “attribute-induced subgraphs” (AIS, in short) – each of which is a
subgraph induced by the nodes affiliated to a given attribute – substructures which con-
nect the structure of friendship graph to the distribution of attribute values. See Sec. 3
for more details and Fig. 1 for an example. Studying the patterns exhibited by the struc-
tural properties of AIS allows us to understand homophily effects (‘birds of the same
feather flock together’) and consider questions of form ‘If the number of users affiliated
to attribute a doubles, what happens to the number of friendships between them?’ As we
show later, the patterns discovered based on AIS and the associated capability to answer
‘what-if’ questions are subsequently useful in (i) detecting deviations as anomalies and
(ii) developing and testing a realistic model for social-affiliation graphs.

Our contributions are two-fold: (a) Patterns: We study four large real-world social-
affiliation graphs and discover three new consistently recurring patterns regarding the
structural properties of attribute-induced subgraphs. With the help of a case study, we
illustrate how the findings can be leveraged for anomaly detection. (b) Model: We pro-
pose the SOAR model to produce synthetic social-affiliation graphs provably match-
ing all observed patterns. SOAR is based on the principle of self-similarity, implicitly
incorporates attribute correlations, scales linearly and is up to 50× faster than the cur-
rently available models for social-affiliation graphs.

The outline of our paper is as follows: Sec. 2 gives a brief survey. Sec. 3 describes
notations and datasets. Sec. 4 details our pattern discoveries. Sec. 5 presents the pro-
posed SOAR generator, theoretical guarantees and empirical evaluation.

Reproducibility. We use publicly-available datasets and open-source our code at www.
github.com/dhivyaeswaran/soar.

2 Related Work

We review the most relevant literature by grouping them into three categories. These are
models for social networks with no attributes [A] and those for social-affiliation graphs
when attributes are given [B] and not given [C].
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Table 1. Comparison with other models for social-affiliation graphs.
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Generates edges and attributes simultaneously 4 4 4

Scalable with increasing number of edges and attributes 4 4 4

Provably obeys all observed patterns 4

[A] Social graphs with no attributes. Several outstanding network models have been
proposed to explain the observed structural characteristics of real-world non-attributed
networks. Notably, the Barabási-Albert model for heavy-tail degree distributions [4],
Forest Fire model for shrinking diameter [19], Butterfly model for the evolution of
giant connected component [20], Kronecker model for community structure [18] and
Random Typing Graph Model for self-similar temporal evolution [2]. For a compre-
hensive treatment, we refer to excellent surveys by [22], [6] and [13]. As such, it is not
straightforward how these models could be extended to produce attributes, given the
interplay that exists between attributes and the structure of friendships [11, 9, 25].

[B] Social-affiliation graphs when attributes are given. The problem of modeling net-
work structure in the presence of known nodal attributes has been studied. Notably,
Multiplicative Attribute Graph (MAG) model [15] connects nodes according to user-
specified attribute-based link affinities. Attributed Graph Model (AGM) [24] presents
a generic approach using an accept-reject sampling framework to augment a given non-
attributed network model with correlated attributes. Both MAG and AGM apply to
settings with categorical (not just binary) nodal attributes; however, they scale poorly
with the number of attributes: each edge is sampled proportional to roughly the dot
product of nodal attribute vectors, which is an expensive operation, considering that the
social-affiliation graph datasets we study have around 30K to 1.28M affiliations.

[C] Social-affiliation graphs when attributes are not given. The simultaneous gener-
ation of attributes and friendships, in the context of social-affiliation graphs (i.e., with
many binary attributes), has received some attention. The pioneering work by [29] dis-
covers several patterns in social-affiliation graphs (e.g., power law relation between
number of friends and average count of affiliations). It proposes ZHEL model by adapt-
ing the non-attributed microscopic graph evolutionary model [17] for this setting. [14]
studies the evolution of directed social network of Google+ and its affiliations, focusing
on the density, diameter, degrees and clustering coefficients of users and affiliations.
It proposes SAN model augmenting [17] with attribute-augmented preferential attach-
ment and triangle-closing mechanisms to replicate the observations on Google+. The
patterns we discover in this paper are complementary to the above discoveries. Further,
both ZHEL and SAN model the evolution of social-affiliation graphs, by generating at-
tributes and edges of one node at a time, while in contrast, we investigate a one-shot
approach to graph generation (i.e., without modeling its evolution) which leads to input
parsimony and ∼ 50× speed-up (see Sec. 5).
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Table 2. Frequently used symbols and their meanings.

Symbol Term Description

G social-affiliation graph undirected unweighted graph with many binary nodal at-
tributes

n number of nodes in G
k number of attributes in G
A adjacency matrix n×n binary matrix showing edge existence
F membership matrix n×k binary matrix showing attribute possession

Ga attribute-induced subgraph subgraph induced by nodes affiliated to attribute a
na node count number of nodes in Ga
ma edge count number of edges in Ga
∆a triangle count number of triangles in Ga
σa spectral radius highest singular value of the adjacency matrix of Ga

A qualitative comparison of SOAR model with those from categories [B] and [C]
is given in Table 1.

3 Preliminaries and Datasets

We now formalize the notation used in the rest of the paper and describe our datasets.

3.1 Notation

(a) (b)

Fig. 1. (a) A social-affiliation graph with is-
Square, isStriped binary nodal attributes and
(b) the subgraph induced by isSquare attribute.

Let G = (V, E ,A,M) be a social-
affiliation graph, where V is the set of
nodes (users), A is the set of binary at-
tributes (affiliations3), E is the set of un-
weighted undirected who-is-friends-with-
whom edges among nodes andM is the set
of who-is-affiliated-to-what attribute mem-
berships between nodes and attributes.
That is, if node u is connected to node u′,
then, E includes edges (u, u′) and (u′, u);
similarly, (u, a) ∈ M iff node u is affili-
ated with attribute a. G is equivalently ex-
pressed as a tuple (A,F) of the n × n symmetric adjacency matrix A and the n × k
membership matrix F, where n = |V| and k = |A| denote the number of nodes and at-
tributes respectively. The matrices are binary with 1 indicating the presence of an edge
(in A) or an attribute membership (in F). Table 2 gives the frequently used notation.

Attribute-induced subgraph (AIS). Given a social-affiliation graph G = (V, E ,A,M),
the attribute-induced subgraph Ga corresponding to a given attribute a ∈ A is obtained

3 We use the following pairs of terms interchangeably throughout the paper: (graph, network),
(node, user), (attribute, affiliation).
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Table 3. Social-affiliation graph datasets studied.

Dataset Reference |V| |E| |A| |M|

YOUTUBE [23] 77K 0.4M 30K 0.3M
FLICKR [21] 1.8M 16M 0.1M 8.5M
BRIGHTKITE [8] 58K 0.2M 0.8M 1M
GOWALLA [8] 0.2M 1M 1.28M 4M

by selecting the nodes affiliated to attribute a and the edges which link two such nodes.
Formally, Ga = (Va, Ea) where Va = {u ∈ V | (u, a) ∈ M} and Ea = {(u, u′) ∈
E | u, u′ ∈ Va}. Let na = |Va| and ma = |Ea| denote its number of nodes and edges
respectively. Triangle count ∆a is the number of triangles in Ga while spectral radius
σa is the largest eigenvalue of its adjacency matrix. An example of attribute-induced
subgraph is provided in Fig. 1.

3.2 Dataset Description

We study four large publicly-available datasets, each of which contains a social net-
work formed by friendship (or family) relations and also side-information regarding
affiliations of users. Based on the nature of affiliations, we describe the datasets in two
categories: (i) Online-affiliation networks: In FLICKR [21] and YOUTUBE [23], on-
line photo-sharing and video-sharing websites respectively, users are allowed to form
groups based on their common interests. We consider each group as a binary attribute,
i.e., a user u has a group g if she participates in it. The friendship networks in these
datasets are directed, but still, they have a high link symmetry or edge reciprocity [21].
Hence, for simplicity, we drop the direction of edges and retain a single copy of each
resulting edge to get an undirected graph without multi-edges. (ii) Offline-affiliation
networks: BRIGHTKITE and GOWALLA datasets [8] contain undirected friendship net-
work along with user check-in information, i.e., who visited where and when. We use
each location as a binary attribute; a user u has a location attribute l if she has visited l
at least once. For a detailed description of these datasets, we refer readers to the papers
cited above. Some useful statistics are provided in Table 3. The next section details our
pattern discoveries on these datasets.

4 Pattern Discoveries

Given an attribute-induced subgraph Ga = (Va, Ea), there is an infinite set of graph
properties that one could investigate to look for patterns (number of nodes/edges, de-
gree distributions, one or more eigenvalues, core number, etc.). Which ones should we
focus on? Intuitively, we want to study properties that are (i) fundamental, easy to un-
derstand and interpret, (ii) fast to compute, exactly or approximately, in near-linear time
in the number of edges and (iii) lead to prevalent patterns that AISs obey consistently
across different datasets. After extensive experiments, we shortlist the following four
properties of attribute-induced subgraphs:

– na = |Va|: number of nodes in Ga, i.e., number of users affiliated with attribute a.
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– ma = |Ea|: number of edges in Ga, i.e., number of friendships among users affili-
ated with attribute a.

– ∆a: number of triangles in Ga, typically indicative of the extent to which nodes in
Ga tend to cluster together (e.g., via clustering coefficient).

– σa: spectral radius, or the principal eigenvalue of adjacency matrix of Ga, roughly
indicative of how large and how dense the giant connected component in Ga is.

We list our observations (P1, P2, P3) regarding the above properties of attribute-
induced subgraphs in Sec. 4.1 and postpone explanations/implications to Sec. 4.2.

4.1 Observations

Following standard terminology, we say that variables x and y obey a power law with
exponent c, if y ∝ xc [1]. Our pattern discoveries are all power laws with non-negative
(and usually non-integer) exponents, as stated below.

Observation 1 ( [P1] Edge count vs. node count) Edge count ma and node count na
of attribute-induced subgraphs obey a power law: ma ∝ nαa , 0 ≤ α ≤ 2.

In the datasets we studied, α ∈ [1.17, 1.51]. That is, double the nodes in an AIS,
over double (roughly, triple) its edges

Observation 2 ( [P2] Triangle count vs. node count) Triangle count∆a and node count
na of attribute-induced subgraphs obey a power law: ∆a ∝ nβa , 0 ≤ β ≤ 3.

In the datasets we studied, β ∈ [1.24, 1.96]. That is, as the number of nodes in an
AIS doubles, its triangle count becomes about 3-4 times larger.

Observation 3 ( [P3] Spectral radius vs. triangle count) Spectral radius σa and tri-
angle count ∆a of attribute-induced subgraphs obey a power law: σa ∝ ∆γ

a, γ ≥ 0.

In the datasets we studied, γ ∈ [0.31, 0.33]. That is, doubling the spectral radius of
an AIS leads to an eight-fold increase in its number of triangles.

Fig. 2, which plots the relevant quantities (ma vs. na, ∆a vs. na and σa vs. ∆a),
illustrates these observations. The cloud of gray points in these figures show values
corresponding to various AISs and darker areas signify regions of higher density. The
relevant exponents α, β, γ are computed following standard practice (e.g., as in [16]).
We bucketize x-axis logarithmically and compute per-bucket y averages (black trian-
gles). The slope of the black line, which is the least-squares fit to the black triangles,
gives the exponent. In addition, we report the Pearson correlation coefficient ρ of the
per-bucket averages as a proxy for the goodness-of-fit of the power law relation. This
value lies in [0, 1] and intuitively, the higher the value is, the better is the fit. In our
experiments, ρ was consistently above 0.95, suggesting a near-perfect fit.

Note that although we listed only three observations connecting the four structural
properties, it is possible to derive three more. For example, we can use Obs. 1 and Obs. 2
to connect triangle count to edge count as∆a ∝ mβ/α

a . We choose the above patterns in
particular as they permit (a) intuitive explanations and (b) easy-to-characterize anoma-
lies which result from any deviations from these patterns.
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[P1] Edge count [P2] Triangle count [P3] Spectral radius
vs. node count vs. node count vs. triangle count

α ∈ [1.17, 1.51], ρ ≥ 0.99 β ∈ [1.24, 1.96], ρ ≥ 0.95 γ ∈ [0.31, 0.33], ρ ≥ 0.99

Fig. 2. Patterns exhibited by attribute-induced subgraphs (each point represents an AIS).

4.2 Explanations and Implications for Anomaly Detection

Here, we attempt to explain our observations in terms of known/expected properties of
social-affiliation networks and hypothesize the nature of anomalies deviation from each
pattern above would give rise to.

[P1] Edge count vs. node count. As the number of nodes in an AIS doubles, the number
of edges remains the same (α=0) for empty social-affiliation graphs having no edges
and quadruples (α=2) for complete graphs. As real-world social-affiliation networks
tend to be sparse (|E| = O (|V|)), one might expect the exponent α to be roughly
1. However, in experiments, α was much higher, e.g., ∼1.5 for FLICKR dataset. This



8 D. Eswaran et al.

suggests homophily, i.e., more friendships among people sharing the same attributes,
which causes the number of edges to more than double (in fact, triple) when the number
of nodes is doubled. Attribute-induced graphs violating this pattern can be understood
as unusually sparse or dense having too few/many friendships between users sharing
an attribute, e.g., when no two people who go to Starbucks are friends with each other.

[P2] Triangle count vs. node count. As the number of nodes in an AIS doubles, trian-
gle count remains the same (β=0) for empty or tree/star-like graphs with no triangles
and becomes eight times (β=3) for fully connected graphs. In experiments, β was been
1 and 2; that is, the triangle count becomes 2-4 times when the node count doubles.
This suggests that the AISs are neither stars nor cliques (as might ideally be expected
based on homophily) but somewhere in between – consisting of several small stars,
cliques and also possibly isolated nodes. Violations of this pattern can be understood
as unusually non-clustered attribute-induced subgraphs (triangle-free, e.g., trees) or un-
usually clustered graphs (cliques). For example, it is suspicious if everyone who visits
‘ShadySide’ are friends with each other.

Fig. 3. Eigenvalues of AISs
with top 5 node counts from
YOUTUBE dataset.

[P3] Spectral radius vs. triangle count. We know
that the number of triangles in a graph is the sum
of cubes of its adjacency’s eigenvalues [12]. Based
on this, we provide two sufficient conditions for the
observed slope of γ≈1/3. Condition 1 (Dominating
first eigenvalue): the first eigenvalue is much bigger
than the rest; hence, triangle count of AISs are ap-
proximately the cube of their respective spectral radii
(roughly, the number of triangles in their giant con-
nected components, GCCs). Condition 2 (Power law
eigenvalues): Lem. 1 provides an alternate explanation
assuming exponents of eigenvalue power law distribu-
tions of all AISs are identical. Diving deeper into the
eigenvalue vs. rank plots of AISs (see Fig. 3) reveals skewed eigenvalues distributions
with similar slopes – suggesting that both reasons above are at play. Violations are due
to attribute-induced subgraphs having unusually small or sparse or dense GCCs.

Lemma 1 (Spectral radius-triangle count power law). If s is the common exponent
of power law eigenvalue distributions of the attribute-induced subgraphs for a given
social-affiliation graph, their triangle counts ∆a and spectral radii σa approximately
obey ∆a = σ3

a ζ(3s) where ζ(·) is the Riemann zeta function [27].

Proof. As the eigenvalues of adjacency matrices of all AISs follow a power law with
exponent s, the ith eigenvalue of any AIS is σai−s, where σa is its spectral radius.
Hence, triangle count ∆a, which is the sum of cubes of eigenvalues of the adjacency, is
equal to

∑
i(σai

−s)3 ≈ σ3
a

∑∞
i=0 i

−3s = σ3
a ζ(3s), as desired. �

Anomaly detection. Our pattern discoveries represent normal behavior of attributes in
a social-affiliation graph, deviations from which can be flagged as anomalies. For ex-
ample, the spectral radius vs. triangle count plot for YOUTUBE yields a dense cloud of
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(a) pattern (b) anomalous AIS (c) normal AIS

Fig. 4. Anomaly detection using pattern [P3] reveals an attribute-induced subgraph (AIS) with an
unusually sparse giant connected component (GCC).

points mostly distributed along a straight line in log-log scales (Fig. 4a); the red triangle
marks an exception due to an anomalous attribute. It turns out that, as expected, the de-
viation was due to its unusually sparse GCC, which consisted of a giant star plus a few
triangles (see Fig. 4b for its GEPHI visualization [5]). In contrast, a typical AIS with a
comparable triangle count (green triangle in Fig. 4a) has a denser GCC (Fig. 4c).

4.3 Discussion

It is natural to suppose that the data scraping methodology (sampling size/strategy)
would have a considerable impact on the pattern discoveries. However, the consis-
tency of our observations across datasets sampled in various ways – multiple sizes
(GOWALLA and BRIGHTKITE– almost whole public data; FLICKR, YOUTUBE– large
fraction of the giant weakly connected component [21, 8]) and strategies (no sampling,
snowball sampling using forward and/or reverse links depending on the public API)
– suggest that the patterns are indeed robust to many reasonable data scraping mech-
anisms. Also, note that our study is limited to the case of binary attributes; similar
explorations of categorical/real-valued attributes are possible but left to future work.

5 SOAR Model

In this section, we show how to generate graphs which provably obey the discovered
patterns using a coupled version of the matrix Kronecker product [26]. The resulting
model, called SOAR– short for SOcial-Affiliation graphs via Recursion– has two steps:
(i) an initiator graph G1, consisting of carefully coupled initiator matrices A1 for adja-
cency and F1 for membership, is chosen; (ii) the initiator graph is recursively multiplied
with itself via Coupled Kronecker Product (Def. 1) for a desired number of steps M to
obtain the final social-affiliation graph. Sec. 5.1 presents SOAR model in detail.

Our main contribution here is the proof that Coupled Kronecker Product is a pattern-
preserving operation, in the sense that if the initiator graph obeys patterns P1-P3, so
does the final graph (see Sec. 5.2). In addition, SOAR has two practical advantages.
First, SOAR is a one-shot generator, which generates all nodes and attributes simul-
taneously, without modeling their arrival or evolution processes. Second, it implicitly
models correlation of attribute with network structure and other attributes, due to the
coupling between initiators and the self-similar Kronecker product. The result is a
∼ 50× speedup compared to the existing models (see Sec. 5.4).
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5.1 Proposed SOAR Model

Recall from Sec. 3 that G is a tuple (A,F) of the n×n symmetric adjacency matrix
A and the n×k membership matrix F, where n= |V| and k= |A| denote the number
of nodes and attributes respectively. Given an initiator social-affiliation graph G1 =
(A1,F1), where A1 is the n1×n1 symmetric initiator matrix for adjacency and F1

is the n1×k1 initiator matrix for membership, SOAR model we propose to derive the
final social-affiliation graph G = (A,F) via the following recursive equation:

Gt+1 = Gt ⊗̄ G1 (1)

where ⊗̄ is the Coupled Kronecker Product, as defined below:

Definition 1 (Coupled Kronecker Product (CKP)). Given social-affiliation graphs
G1 = (A1,F1) and G2 = (A2,F2), their Coupled Kronecker Product is given by

G1 ⊗̄ G2 = (A1 ⊗A2,F1 ⊗ F2) (2)

where ⊗ is the matrix Kronecker product.

After M steps of Eq. (1), we obtain a n×n-dim AM and a n×k-dim FM where
n=nM1 and k=kM1 respectively. When the initiator matrices are binary, so are the final
matrices and thus can be directly used as the adjacency A and membership F matrices,
respectively. It turns out that the above process captures the required power laws but
has several discrete jumps (fluctuations). Hence, we use the stochastic version below.

The main idea is to produce at every recursive step, matrices of edge/membership
occurrence probabilities instead of discrete (binary) edges/memberships. Thus, we be-
gin with initiator matrices having real number entries in [0, 1] (they do not need to sum
to 1) and add a small relative noise η to the initiator matrices independently at every
recursive step t. This process results in the final dense probability matrices AM and
FM , from which we recover A and F by sampling each entry proportional to its final
value. A scalable implementation of the above approach by sampling one edge or mem-
bership at a time is given in Alg. 1. The Hadamard product� in lines 8 and 10 performs
an element-wise matrix multiplication to add the desired noise to the initiators.

Running time analysis. Initialization (ln 1-11 ) contributes a fixed overhead ofO(M(n21+
n1k1)). The generation of edges (ln 12-20 ) and memberships (ln 21-29 ) takeO

(
n21M

)
per edge and O (n1k1M) per membership respectively. As n1, k1 and M are small in
practice (< 10), Alg. 1 is linear in the number of edges and attribute memberships.

5.2 Theoretical Properties

The structural properties of graphs generated using Kronecker product are well-studied
and a number of desirable properties have been proved, e.g., multinomial distribution
of degrees and singular values, etc. [18]. These properties directly carry over to the
proposed model. More surprisingly, for careful coupling of initiators, SOAR graphs
provably obey all the discovered power laws from Sec. 4. This is due to the pattern-
preserving property of the Coupled Kronecker Product operation. That is, if graphs G1
and G2 obey the patterns P1-P3 with the same exponent, then, so does their Coupled
Kronecker Product G1 ⊗̄ G2. This is stated in Lem. 2-4 (proofs in appendix).
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Require: Initiators A1 ∈ [0, 1]n1×n1 and F1 ∈ [0, 1]n1×k1 , recursive steps M ∈ N,
noise η ∈ [0, 1]

Ensure: (A,F) = SOAR(A1,F1,M, η)
1: /* determine number of edges and memberships */
2: num edges← b(sum of entries in A1)

Mc
3: num memberships← b(sum of entries in F1)

Mc
4: /* create M noisy copies of initiator matrices (A1,F1), . . . , (AM ,FM ) */
5: A0,F0 ← A1,F1

6: for t = 1, 2, . . . ,M do
7: Sample NA,t ∼ [−0.5, 0.5]n1×n1 // i.i.d, uniform
8: At ← A0 + ηA0 �NA,t // At ∈ [0, 1]n1×n1

9: Sample NF,t ∼ [−0.5, 0.5]n1×k1 // i.i.d, uniform
10: Ft ← F0 + ηF0 �NF,t // Ft ∈ [0, 1]n1×k1

11: end for
12: /* generate edges */
13: A← 0nM

1 ×nM
1 // zero matrix in sparse format

14: for i = 1, 2, . . . , num edges do
15: for t = 1, 2, . . . ,M do
16: rt, ct ← Sample a position in At proportional to its value
17: end for
18: r ←

∑M
t=1 rt × n

t−1
1 and c←

∑M
t=1 ct × n

t−1
1

19: Arc ← 1 and Acr ← 1 // add an undirected unweighted edge
20: end for
21: /* generate attribute memberships */
22: F← 0nM

1 ×kM
1 // zero matrix in sparse format

23: for i = 1, 2, . . . , num memberships do
24: for t = 1, 2, . . . ,M do
25: rt, ct ← Sample a position in Ft proportional to its value
26: end for
27: r ←

∑M
t=1 rt × n

t−1
1 and c←

∑M
t=1 ct × k

t−1
1

28: Frc ← 1
29: end for

Algorithm 1: SOAR model

Lemma 2 (CKP preserves pattern [P1]). If G1 and G2 obey the edge count vs. node
count power law with exponent α, i.e., ma ∝ nαa , so does G1 ⊗̄ G2.

Lemma 3 (CKP preserves pattern [P2]). If G1 and G2 obey the triangle count vs.
node count power law with exponent β, i.e., ∆a ∝ nβa , so does G1 ⊗̄ G2.

Lemma 4 (CKP preserves pattern [P3]). If G1 and G2 obey the spectral radius vs.
triangle count power law with exponent γ, i.e., σa ∝ ∆γ

a , so does G1 ⊗̄ G2.

The proofs, given in appendix, use the properties of matrix Kronecker product [26]
and two key observations: (1) edge count, node count, triangle count and spectral radius
of AIS for an attribute a are explicit algebraic functions of the adjacency matrix A and
the column in F which corresponds to a; (2) each column in F1 ⊗F2 is the Kronecker
product of a column in F1 and a column in F2. Given this, our main result is:
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Theorem 1 (SOAR graphs provably obey patterns P1-P3). If G1 = (A1,F1)
obeys patterns P1-P3 with exponentsα, β and γ respectively, then G = SOAR(A1,
F1,M, η=0) also obeys P1-P3, with the same exponents α, β and γ.

Proof. We use an induction based argument on the number of Kronecker steps t =
1, . . . ,M . It is given that G1 follows P1-P3, hence the base case for t=1 is true. Now
suppose for 1 ≤ t < M , Gt follows P1-P3. Then, using Lem. 2, Lem. 3 and Lem. 4,
Gt ⊗̄ G1 = Gt+1 follows P1-P3. Thus, by induction, G = GM obeys P1-P3. �

Although Thm. 1 assumes zero-noise case, it can be easily extended to the stochastic
version of the SOAR generator to give similar guarantees in expectation. Our simula-
tion studies, presented in Sec. 5.4, confirm our theoretical results.

5.3 Discussion

We elaborate on various aspects of the proposed SOAR model.
Input parsimony. SOAR, belonging to the paradigm of one-shot graph generation,

has only four knobs to set: two (small) initiator matrices (A1,F1), number of recursive
steps M and noise level η. In contrast, evolutionary models typically need knobs for
node-arrival, lifetime, sleep-time and linking processes (e.g., [29]).

Attribute correlations. SOAR implicitly incorporates attribute correlations, as Kro-
necker product naturally leads to recursive community structure [18]. Contrast this with
[24] which explicitly models attribute correlations.

Parameter fitting. Given a social-affiliation network G = (A,F), its parameters for
SOAR model can be learned by employing KronFit [18] for A and F separately.

Parameter selection. To create social-affiliation graphs with homophily, we recom-
mend choosing initiators such that the entries of F1F

T
1 are correlated with those of A1.

Intuitively, this ensures that nodes with similar attributes are linked in the initiator and
the self-similarity of Kronecker product passes this property on to the final graph.

5.4 Simulation Studies

We compare SOAR to two representative baselines – AGM [24] and SAN [14] – which
were the most recent works in categories [B] and [C] from Sec. 2. Quantitative exper-
iments compare the time taken by the models to generate graphs of comparable sizes,
while qualitative experiments verify whether the models are able to generate graphs
obeying the following discovered properties of social-affiliation graphs:

[P1] Edge count vs. node count power law relation
[P2] Triangle count vs. node count power law relation
[P3] Spectral radius vs. triangle count power law relation

as well as the following well-known properties concerning the degrees and eigenvalues:
[P4] Skewed distributions4 of #friends per node (node degree), #attributes per

node (attribute degree of node) and #nodes per attribute (AIS node count) [29]
[P5] Skewed distribution of eigenvalues of adjacency matrix [7]

4 distributions having an asymmetric long or heavy tail, e.g., log-normal, log-logistic, etc.
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(a) A1 (b) F1 (c) [P1] (d) [P2]

(e) [P3] (f) [P4] (g) [P5]

Fig. 6. SOAR generates realistic graphs: initiators in (a-b) lead to the discovered patterns P1-P3
(c-e) and skewed degree and eigenvalue distributions P4-P5 (f-g).

We use the open-sourced code for SAN as is, but adapted AGM to get a skewed
distribution of #nodes per attribute (i.e., group size [29]) and subsequently generated
edges using the default Fast Chung Lu model. For SOAR, we use the following pa-
rameter values: initiators from Fig. 6a-b (observe the correlation between F1F

T
1 and

A1) replacing 1 → 0.6, 0 → 10−4 for stochasticity (and scaling the remaining entries
appropriately), recursive steps M = 8 and noise level η = 0.5. This yields a graph with
0.4M nodes, 5.6M edges, 65K attributes and 2M attribute memberships.

Fig. 5. Speed and scalability.

Quantitative evaluation. Fig. 5 compares generation
time of SOAR vs. SAN for five different graph sizes
(AGM, due to the explicit enforcing of attribute corre-
lations, scaled poorly with #attributes). Running times
are averaged over 10 runs and experiments were per-
formed on Mac OSX Yosemite with 2.7GHz Intel i5
core and 16GB main memory. We find that SOAR
scales linearly, i.e., slope ≈ 1 in log-log scale. SAN
also shows the desired linear scalability, but was 50×
slower for ∼1M edges plus memberships.

Qualitative evaluation. From Fig. 6 and Fig. 7, we
observe that only the proposed SOAR model is able to generate graphs obeying all
these five patterns (Fig. 6), whereas the baselines fail at least one of them (Fig. 7a).
In the interest of space, we show only one failed pattern per baseline: AGM leads
to very low triangle count for AIS, perhaps due to its undesirably high importance to
attribute correlation and homophily, which leads to few edges between nodes sharing
attributes when the number of attributes is large (Fig. 7b); SAN produces an almost
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Pattern

A
G

M

SA
N

SO
A

R

[P1] 4 4

[P2] 4 4

[P3] 4 4

[P4] 4 4 4

[P5] 4 4

(a) (b) (c)

Fig. 7. (a) Graphs generated by baselines (AGM, SAN) disobey at least one pattern, e.g., (b) [P3]
of AGM and (c) [P5] of SAN. Here, 4 denotes empirical adherence based on a few parameters,
while 4 indicates theoretical adherence as well.

flat eigenvalue distribution (excluding first three values), likely due to the underlying
preferential attachment model (Fig. 7c).

In summary, our simulations demonstrate that SOAR is able to generate social-
affiliation graphs obeying all observed patterns in a fast and scalable manner.

6 Conclusion

We investigated the problem of pattern analysis and modeling of social-affiliation graphs
– a friendship graph where users have many, binary attributes e.g., check-ins, page
likes or group memberships – with the help of four large publicly-available real-world
datasets. Our contributions are:
(i) Patterns: We discovered three new consistently recurring patterns regarding the
structural properties of attribute-induced subgraphs and illustrated how the findings can
be leveraged for anomaly detection.
(ii) Model: We proposed SOAR model to produce synthetic social-affiliation graphs
provably matching all observed patterns. It is based on the principle of self-similarity,
implicitly incorporates attribute correlations, scales linearly and is up to 50× faster than
the currently available generators for social-affiliation graphs.

Our code is open-sourced at www.github.com/dhivyaeswaran/soar. Sim-
ilar exploration of node-attributed graphs with categorical and/or real-valued attributes
is a valuable direction for future work.
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Appendix (Proofs from Sec. 5)

First, recall the following properties of the Kronecker product [26] for any four suitably
sized matricesA,B,C andD: (A⊗B)T = AT ⊗BT ; (A⊗B)(C⊗D) = AB⊗CD;
Tr[A⊗B] = Tr[A]Tr[B]; σ(A⊗B) = σ(A)σ(B) where σ(·) is the spectral radius.

Next, observe that edge count, node count, triangle count and spectral radius of
AIS for an attribute a can be explicitly expressed as a function of adjacency matrix
A and the ath column in F (call it fa) as follows: (i) Node count of AIS, na =
fTa fa; (ii) Edge count of AIS, ma = 1

2f
T
a Afa; (iii) Triangle count of AIS, ∆a =

1
6Tr[(D(fa)AD(fa))

3
], assuming no self loops – here, D(fa) denotes the diagonaliza-

tion of vector fa; (iv) Spectral radius of AIS, σa = σ(D(fa)AD(fa)).
Let the compact notation,

⊗n
j=1Aj denote A1 ⊗ A2 . . .⊗ An. Accordingly, every

column of
⊗n

j=1Aj can be expressed as the Kronecker product of a column from each
Aj , j ∈ {1, . . . , n}. We are now ready to state our proofs.

Proof (Lem. 2). Any column fa in F1 ⊗ F2 is a Kronecker product of columns fi,1
in F1 and fj,2 in F2 for some i, j. The node count of AIS of a is fTa fa = (fi,1 ⊗
fj,2)T (fi,1⊗fj,2) which simplifies to (fTi,1fi,1)(fTj,2fj,2) i.e., na = ni,1nj,2. Similarly,
the edge count of AIS of a isma = 1

2 (fi,1⊗fj,2)T (A1⊗A2)(fi,1⊗fj,2) which can be
written as 2( 1

2f
T
i,1A1fi,1)( 1

2f
T
j,2A2fj,2) ∝ mi,1mj,2. Now, as G1,G2 follow [P1] with

exponent α (given), mi,1 ∝ nαi,1 and mj,2 ∝ nαj,2. Hence, ma ∝ nαa .

Proof (Lem. 3). Again, let fa = fi,1 ⊗ fj,2 for attributes i, j, a in G1,G2 and G1 ⊗
G2 respectively. The node count of AIS of a, again, is na ∝ ni,1nj,2. The triangle
count of AIS of a is ∆a = 1

6Tr[(D(fa)(A1 ⊗A2)D(fa))3] which can be simplified as
1
6

(
Tr[(D(fi,1)A1D(fi,1))3]

) (
Tr[(D(fj,2)A2D(fj,2))3]

)
∝ ∆i,1∆j,2 using the first,

second and third Kronecker properties stated above. Now, as i and j follow [P2] with
exponent β (given), ∆i,1 ∝ nβi,1, and ∆j,2 ∝ nβj,2. This results in ∆a ∝ nβa .

Proof (Lem. 4). Once again, let fa = fi,1⊗fj,2 for attributes i, j, a in G1,G2 and G1⊗G2
respectively. We know from the previous proof that triangle count of AIS of a follows
∆a ∝ ∆i,1∆j,2. Now, spectral radius of AIS of a is σa = σ(D(fa)(A1 ⊗A2)D(fa))
which is σ(D(fi,1)A1D(fi,1))σ(D(fj,2)A2D(fj,2)) = σi,1σj,2 due to the second and
fourth Kronecker properties stated above. As graphs G1,G2 follow [P3] with exponent
γ (given), i.e., σi,1 ∝ ∆γ

i,1 and σj,2 ∝ ∆γ
j,2. Therefore, σa ∝ ∆γ

a .


