
A Diffusion of Innovation-Based Closeness Measure for Network Associations

Reihaneh Rabbany Khorasgani, Osmar R. Zaı̈ane
Department of Computing Science

University of Alberta
Edmonton, Canada

rabbanyk,zaiane@ualberta.com

Abstract—Network association is a prevalent representation
when dealing with data from present-day applications. Ex-
amples are crime event connections in criminology, cellphone
call graphs in telecommunication, co-authorship networks in
bibliometrics, etc. A large body of work has been devoted to the
analysis of these networks and the discovery of their underlying
structures. One important structure is the notion of community
i.e. a group of nodes that are relatively cohesive within and
reasonably disjointed outside. Finding the communities usually
relies on a closeness/distance measure between network nodes.
In this paper, we propose a novel closeness measure, named
iCloseness, inspired by the theory of Diffusion of Innovations
in anthropology. It is computed based on the intersection of
neighbourhoods and quantifies the closeness of two nodes. To
apply this measure we adjusted the Top Leaders community
mining method to use this measure for community detection.
Experimental results on real world and synthesized information
networks show the effectiveness of our proposed measure and
highly motivate the application of the iCloseness measure in
the context of community mining.

Keywords-Social Network Analysis; Closeness Measure;
Community Mining

I. INTRODUCTION

Nowadays, in myriad application domains we are collect-
ing inter-related data in the form of networks such as in
marketing, biology, epidemiology, sociology, criminology,
zoology, etc. A common trait of today’s social networks or
information networks, and many other scientific data sets,
is their community structure, which denotes the existence
of densely connected groups of nodes, with sparser con-
nections between these groups. Finding these communities
could be of significant practical importance to understand
the corresponding data, such as organizational structures,
academic collaborations and the user communities in a
telecommunication network. Therefore, Community Mining,
which focuses on the detection and characterization of such
network structure, has received considerable attention over
the past few years in social sciences, such as psychology, an-
thropology, criminology, etc., and lately in computer science,
particularly in data mining. There are several definitions for
communities in the network, but there is no generalized
consensus. For instance, a community can be seen as a
sub-graph such that the density of edges within the sub-
graph is greater than the density of edges between its nodes
and nodes outside it [1]. From that perspective, identifying

communities can be seen as finding node clusters in a graph,
or graph partitioning. Others have defined a community
membership based on a notion of structural similarity[2] al-
lowing the additional distinction of hubs that bridge between
communities and outliers that are marginally connected.

Alternatively, we could assume communities as groups of
nodes in the network that are similar to each other. Where
nodes are associated with the community whose members
are most similar to it. In typical clustering approaches,
data items are usually represented by feature vectors while
their similarity is computed by a pattern proximity measure,
usually a distance function defined on pairs of data points
(e.g. Euclidean distance, Mahalanobis distance). There are
few similarity/distance measures proposed for relational
data in the form of graph or network [3]. However none
are commonly used or properly suitable in the context of
community mining.

In this paper we proposed a new similarity/closeness
method for graphs, which is appropriate for mining com-
munities. This closeness measure, called Intersection Close-
ness (iCloseness for short), assesses the relations between
community nodes. ICloseness encapsulates the notion of
membership in a community and its basic idea is reinforced
by observations made on community dynamics in social
networks with regard to the probability of joining a group
based on the concept of Diffusion of Innovation [4]. It
is observed that the likelihood of joining a community in
social networks depends upon the number of pre-existing
connections with group members and the density of edges
between these members and other members in the group.
In other words, if I am faced with two groups in which I
already have friends and if I need to join one of these groups,
I could choose either one but, there is a higher probability to
join the group in which I have more friends. In addition if I
am faced with two groups in which I have the same number
of friends, there would be a higher probability that I would
join the group in which the connectivity of my friends with
the group is stronger.

To present applicability of the iCloseness in community
mining, we adjusted our Top Leaders community detection
approach introduced in [5] to use our iCloseness as its
proximity measure. iTop Leaders, this new version of Top
Leaders coupled with our notion of closeness highlighted



herein, exhibits promising results both on real and synthetic
data sets. It alos allows us to identify marginal nodes in
a network as outliers and thus is not affected by noise.
Moreover, hubs, nodes that connect different communities,
can also be identified.

After discussing related work in Section II, we detail the
iCloseness measure and propose the adjusted iTop Leaders
algorithm in Section III. We show later in the experiments
in Section IV that the proposed mining approach leveraged
with iCloseness accurately extracts communities. In com-
parison with other measures and methods, we consistently
discover the most accurate results.

II. RELATED WORK

The research topic of social network analysis is not new
and has been the focus of many scholars in anthropology
and psychology for many decades. Detecting communities
in a social network has also been pursued by sociologists
and more recently physicists and applied mathematicians
with applications to social and biological networks [6].
With the availability of large real world networks, computer
scientists have also joined the effort and community mining
is becoming a very popular research endeavour. This line of
research is addressing similar question as graph partition-
ing. There are, however, important differences between the
goal and applications of the two camps, graph partitioning
and community mining, that make quite different technical
approaches desirable [7].

One important family of graph partitioning algorithms is
the spectral clustering method [8], which divides the network
into two groups by looking at the eigenvector corresponding
to the second lowest eigenvalue of the adjacency graph
Laplacian and separating the vertices by whether the element
is greater than or less than zero. Division into a larger
number of groups is usually achieved by repeated bisection.
Unfortunately, the sizes of the groups into which the net-
work is divided need to be fixed, but are usually unknown
beforehand. Additionally, if we set the group sizes to be
unconstrained, the method (and other methods that minimize
cut size without constraints on the group size) could break
down: the minimum cut size is always achieved by the trivial
division which puts all vertices in one group and none in
the others. Several methods have been proposed to fix the
problem, such as ratio cut [9], normalized cut [10], and the
min-max cut [11]. However, these approaches are biased in
favour of divisions into equal-sized parts.

The major incompatibility of these methods is that com-
munity structure detection assumes that the networks divide
naturally into some partitions and there is no reason that
these partitions should be of the same size. Therefore, in
their study of social networks, sociologist have taken no no-
tice of the aforementioned spectral clustering or other graph
partitioning methods, and have instead adopted hierarchical
clustering [12] as the standard method.

The main idea of the hierarchical clustering method is to
discover natural divisions of social networks into groups,
based on a metric measuring the similarity/closeness be-
tween vertices and/or a quality function measureing the
quality of a particular division. [13], [14], [15], [16], [17],
[18]. The modularity Q [17], [14], is a well-known example
of such quality function in finding communities [19] and
serves as the basis of many other later proposed metrics.

The closeness measure presented in this paper is based on
the connection between theoretical models of diffusion in
social networks to the community membership investigated
by Backstrom et al. [4]. They studied the evolution of large-
scale social networks over time and found that the tendency
of an individual to join a community is influenced by their
number of friends in that community and also crucially by
how those friends are connected to one another.

III. METHOD

Here we first introduce our proposed measure of closeness
– iCloseness(Section III-A). We then continue in Section
III-B by overviewing the Top Leaders Community Mining
approach and present our adjustments to this algorithm
mainly how it applies iCloseness in associating nodes to
the communities.

A. iCloseness

Defined based on theory of Diffusion of Innovations and
its application to information networks [20], [21], iCloseness
measures closeness between two nodes. It indicates how
much these nodes tend to belong to the same community and
is calculated based on their common neighbours. Diffusion
of Innovations which stems from research in sociology, is
a theory of how, why, and at what rate new ideas and
technology spread through cultures. Specifically for the case
of information networks, if we consider the act of joining
a community as a behaviour that spreads within a network
the idea of Diffusion of Innovations very naturally extends
to community mining. Socially, there is indeed advantage
in joining a group that already includes friends that know
each other and who are connected. Backstrom et al. further
discuss this idea in the context of social networks dynamics
[4]. Accordingly the probability of joining a community
depends on the number of friends one already has in the
community and the internal connectedness of the friends
within it. The Intersection Closeness (iCloseness), which is
based on the common neighbours of two nodes within a
predefined neighbourhood, is our central mean to reflects
this idea.

Figure 1, illustrates the idea behind iCloseness using an
example. Suppose we want to assign node n to either one
of the two communities led by L1 and L2. The important
factors are a) Number of n’s neighbours in each commu-
nity (Figure 1(a)). One prefers a group in which one has
more friends. b) Connectivity of n’s neighbours in each
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Figure 1. Determining community of node n: n should be assigned to
community of leader L1 because a) n has more common neighbours with
L1 than L2, b) although n has the same number of common neighbours
with L1 and L2, its common neighbours in L1’s intersection are more
connected to each other, c) although n has the same number of common
neighbours with L1 and L2 and both intersections are equally dense, it
has more common neighbours with L1 if we expand its neighbourhood
boundary by one. In other words, its neighbours are more connected within
the community of L1.

community. One is more tempted to join a group where he or
she has friends who already know each other (Figure 1(b)).
And finally c) The depth of the neighbourhood. We further
exploit the neighbourhood information by considering not
only friends but also friends of friends, their friends and so
on (Figure 1(c)).

1) Computation: We represent a network as a graph
G(V,E); V is set of nodes and E is set of edges. Let
e(u, v) denotes an edge between node u and v. Also consider
ℵ(v) denotes neighbourhood of node v, i.e. u ∈ ℵ(v) iff
there exists a path of length at most δ to that node from
v. Here, δ is the neighbourhood threshold. If we set δ to
1, ℵ(v) would be the immediate neighbours of node v or
its direct friends. To compute the iCloseness we first score
the neighbours of every node not only based on the depth
of their neighbourhood (length of the path to them) but also
based on how dense they are connected. Then we use scores
of common neighbours between two nodes to calculate their
iCloseness.

The neighbours scoring; every node u in ℵ(v) is assigned
with a neighbouring score relative to v, i.e. ns(u, v). This
score is propagated through unexplored edges as we expand

the neighbourhood:

ns1(u, v) =

{
1 if e(u, v) ∈ E
0 otherwise

E1(v) = {e(u, v) ∈ E}

nsl(u, v) = nsl−1(u, v)+∑
e(u,m)∈E−El−1(v)

nsl−1(m, v)×
e(u,m)∑
i e(i,m)

(1)

El(v) = El−1(v) ∪ {e(i, j) ∈ E | ∃ e(j, k) ∈ El−1(v)}

In this formula all the direct neighbours to v got an initial
score of 1 and then the scores of non-direct neighbours
are determined by spreading these initial scores through the
unexplored edges. More precisely, the ns1(u, v) is initially
0 if u and v are not connected and otherwise it is 1 (or
equal to the weight of the edge from u to v if weighted).
And all the direct edges to v are marked as explored by
adding to E1(v). Generally, El−1(v) marks edges that have
been explored in the previous levels and it is updated by
adding the explored edges in each expansion level. More
specifically, E1(v) = {e(u, v) ∈ E}, direct edges to v,
and at every level of expansion we expand E(v) by one
level, that is any edge e(i, j) that is connected to one of the
edges already in El−1(v) is added to El(v). See Figure 2
for an example of this relative scoring which encodes both
depth of neighbouring/path length and connectivity of the
neighbours/density.

Figure 2. An example of scored neighbourhood relative to node 9. We can
see that closer nodes to node 9 have higher neighbouring scores. Neighbours
with more edges, those that are more densely connected to 9, also obtain
higher scores (e.g. compare 6 and 8).

The iCloseness, is defined based on neighbourhood inter-
sections or common friends. The iCloseness of node v1 and



v2, is obtained as:

iCloseness(v1, v2) =∑
u∈ℵ(v1)∩ℵ(v2)

ns(u, v1)× ns(u, v2) (2)

Figure 3 shows an example of the calculated iCloseness
results which encodes the number of common neighbours
and the connectivity of those neighbours and also the depth
of the neighbourhood.

Figure 3. The same example as Figure 2 but marked with iCloseness of
all nodes to node 9.

Note that iCloseness is symmetric for undirected networks
but does not satisfy the triangle inequality. The neighbour-
hood threshold, δ, determines the maximum neighbourhood
level which should be tuned based on the application. For
example in social networks, the diameter of the whole
network is very small even for the large scale networks,
this is known as the six-degree sepration theoty or the small
world phenomenon [22], [23]. Therefore a small number
(e.g. 3) is sufficient for δ in such applications.

B. Top Leaders

Top Leaders first introduced in [5] is inspired by the well-
known k-medoids clustering algorithm; however it works
based on the relations between data points instead of their
attributes. Similar in principle, this algorithm consists of
choosing k representative nodes as leaders and then associat-
ing other nodes, the followers, to one of these leaders based
on the relations/links between nodes to form communities.
It iteratively elects new leaders for each community and
reassigns nodes to the leaders to form new communities.
Convergence is attained when the best leaders are found
and each node is associated to its most appropriate leader.
Here we adopted the original Top Leaders algorithm to use
iCloseness when determining the community memberships
of nodes. We call our version iTop Leaders. In this section

we present in detail, this approach for detecting communities
and elucidate the processes of selecting the initial leaders,
associating followers to a leader, and electing new leaders.

1) Main Framework: iTop Leaders assumes that a com-
munity consists of a leader and the follower nodes associated
with it; where the community leader is the most central
member in its community. Some nodes in the network may
not be associated with any of the leaders and thus do not
belong to any community. These nodes are considered to be
outliers if their centrality is low and hubs otherwise.

Algorithm 1 highlights the major steps of iTop Leaders
algorithm. The first step is the selection of the initial k
leaders (further described in Section III-B4). The second step
is an iteration in which we alternate between association
of followers and election of new leaders. First, nodes are
either associated to a leader or labeled as outliers or hubs
(elaborated further in Algorithm 2), and second, when all
nodes in the network are dealt with, a new leader is picked
in each community.

Algorithm 1 iTop Leaders algorithm
Input: Social network G, integer k

initialize k leaders
repeat
{finding communities}
for all Node v ∈ G do

if v /∈ leaders then
find community of v {Algorithm 2}

end if
end for
{updating leaders}
for all ` ∈ leaders do
` ← argmax

v ∈ Community(`)
Centrality(v)

end for
until there is no change in the leaders

2) Association of Nodes: Algorithm 2 depicts the process
of associating a node with its iClosest leader which has been
modified from the original version to use the iCloseness.
As another modification, to find the iClosest leader to a
given node, we initialize candidate leaders by considering
only the leaders in its view, ℵ(ℵ(v)), that is neighbourhood
of length 2 × δ. These are the nodes that might possibly
have common neighbours of depth δ with that node. This
rational narrowing down of potential leaders also increases
the speed of algorithm by many folds when applied to large
networks and make the order of the algorithm independent
to the number of communities or k. This gives us a major
advantage over the original Top Leaders or the k-medoids
algorithm.

We measure the iCloseness of the node v to each of its
candidate leaders, to find the iClosest leaders. To detect



outliers in the network, we consider an outlier threshold (γ).
Only leaders that are iCloser than this threshold to the node
are considered. We also considered the case that the node is
not iClose enough to any of the current leaders, but it has
high centrality/power and should be considered as a hub not
an outlier. Where originally, hubs were only considered as
the nodes that follow more than one leader and sit on the
intersection of communities.

Algorithm 2 Associate n to the iClosest leader
Input: Social network G, node v, set of k leaders

depth ← 1
CanList ← leaders ∩ ℵ(ℵ(v))
CanList← argmax iCloseness

` ∈ CandList∧
iCloseness(v,`)>γ

(v, `)

if |CanList| = 0 then {No candidate leader}
if Centrality(v) < ε then {Noise}

associate v as an outlier
else {Powerful but free}

associate v as a hub
end if

else if |CanList| > 1 then {Many candidates}
associate v as a hub

else {Only one candidate leader in CanList}
associate v to the only leader in CanList

end if

3) Updating Leaders: The reassignment of leaders is
simply the election of the node with the highest centrality
in each community as its leader:

`← argmax
v∈Community(`)

Centrality(v)

This is because the centrality of nodes in a community
measures the relative importance/popularity of a node within
that group.

For a community C of size N , the degree centrality of a
node v in C is:

Centrality(v) =
degree(v, C)

N − 1

where degree(v, C) =
∑
u∈C Avu is the number of edges

in C incident upon n. A represents adjacency matrix of the
graph – Auv is 1 if u is connected to v and 0 otherwise (if
weighted, Wvu is used instead of Avu).

4) Initialization: Community leaders are central nodes in
their community. Therefore we choose the k most central
nodes that none of them belong to the same community as
initial leaders. To implement this strategy iTop Leaders start
from the most central node, and add the next central one to
the current set of leaders only if it is not too iClose to any
of the current leaders (compared to a predefined threshold).
A detailed comparison of different initialization methods for
the Top Leaders is presented in [5].

IV. EXPERIMENTS

We demonstrate, using two experiments, the application of
our closeness measure. First in Section IV-A, we compare
different closeness/distance measures when used with the
same community mining algorithm – i.e. Top Leaders. Then
in Section IV-B we compare iTop Leaders – in conjunction
with iCloseness – against other well-known community
mining methods.

The most common approach in evaluating community
mining methods is to apply the algorithm to some well-
known (typically small) real world data-sets for which the
ground truth is known. The accuracy is then reported by
comparing detected communities with the ground-truth using
a measures of agreement. Typical measures are Adjusted
Rand Index (ARI) [24] and Normalized Mutual Information
(NMI) [25], ARI returns a value between −1 (i.e. no
agreement at all) and 1 (i.e. full agreement) with expected
value of 0 for agreement no better than random), where
NMI is between 0(i.e. partitions are independent) and 1(i.e.
partitions are identical). In our experiments we used five
well-known real-world benchmarks: Karate and WKarate
Club (weighted) by Zachary [26], Sawmill Strike data-set
[27], NCAA Football Bowl Subdivision [2], and Politician
Books from Amazon [28].

An alternative approach for evaluating a community min-
ing method is testing it on synthesized networks that are
generated with characteristics similar to that of real-world
networks and with a built-in community structure.Here we
used LFR benchmarks proposed by Lancichinetti et al. that
have heterogeneous distribution over degrees and community
sizes [29] and used in [25] to compare different community
mining algorithms. In these benchmarks, node degrees and
community sizes are derived from power law distributions
while each node shares a fraction µ of its edges with the
nodes of other communities. Here 0 ≤ µ ≤ 1, is called the
mixing parameter [30].

We are also interested in further evaluation of the algo-
rithm using large real networks. Unfortunately here, there
is no explicit notion of ground-truth but we can check if
the results are sound [14], [17]. We use the co-purchasing
network of Amazon.com, collected in August 2003 [14].
It has 815, 223 nodes and 3, 426, 127 edges where edges
connect items that are frequently purchased together.

A. Comparing Measures

1) Comparing on real world benchmarks: Table I
presents a comparison of our proposed closeness measure
– iCloseness (iC) – against four other well-know dis-
tance/closeness measures for graphs: Shortest Path (SP),
Adjacency Relation Distance (ARD), Neighbour Overlap
Distance (NOD), and Pearson Correlation Distance (PCD)
all surveyed in [30]. Here we used our community mining
approach equipped with each of these measures to produce
the results.



Table I
RESULTS OF TOP LEADERS ON REAL BENCHMARK DATA-SETS. IT
COMPARES RESULTS OF TOP LEADERS WHEN USING DIFFERENT

CLOSENESS/DISTANCE MEASURES.

dataset measure ARI NMI

Karate
(2 groups, 34
nodes, 78
edges)

Shortest Path .669 .655
Adjacency Relation .771 .732
Neighbour Overlap .446 .383
Pearson Correlation .328 .324
iCloseness 1. 1.

Strike
(3 groups, 24
nodes, 38
edges)

Shortest Path .935 .926
Adjacency Relation .903 .834
Neighbour Overlap .819 .763
Pearson Correlation .109 .307
iCloseness 1. 1.

PolBooks
(2 groups,
105 nodes,
441 edges)

Shortest Path .647 .542
Adjacency Relation .630 .573
Neighbour Overlap .687 .585
Pearson Correlation .053 .157
iCloseness .769 .696

Football
(11 groups,
180 nodes,
787 edges)

Shortest Path .689 .559
Adjacency Relation .431 .753
Neighbour Overlap .970 .948
Pearson Correlation .082 .007
iCloseness .996 0.989

Figure 4. Comparison of different measures on LFR synthesized
benchmarks. The horizontal axis represent datasets with different mixing
parameter µ, and the vertical axis is the accuracy. Different curves stand
for different measures.

We used the same parameters as well as initial lead-
ers/centres for all methods. The only exception is the hub
value for Politician Books data-set (which contains hubs)
and the outlier threshold for the Football data-set (which
contains outliers). These two parameters depend on the
definition of the closeness measure and therefore, are ad-
justed based for each closeness measure. In all experiments
we clearly obtained the best results using our iCloseness
measure.

2) Comparing on synthesized benchmarks: Figure 4 com-
pares different closeness/distance measures when applied
to synthetic (larger scale) benchmarks. We generated LFR
benchmarks with 1000 nodes, average degree of 20, max-
imum degree of 50 and different µ from .1 to .9, where
communities have 20 to 100 nodes and the default values
are used for exponents of the degree and the community size
distributions (-2 and -1 respectively). These parameters are

Figure 5. Comparison of iTop Leaders, iTL, with other approaches on
real benchmark data sets – a) Karate, b) Strike, c) Politician Books and d)
Football. For each data set/method, the red bar shows the accuracy of results
obtained by that method, the blue bar shows the result of Top Leaders when
seeded with the k obtained from the original method. The green bar is the
ideal when Top Leaders is seeded with correct k.

the same as what Lancichinetti et al. used in [25] to compare
different community mining algorithms (N=1000, B). We
did not use the N=5000 due to computational constraints
imposed by some of these measures e.g. SP is O(n3).

B. Comparing Algorithms

In this section, we compare iTop Leaders equipped with
iCloseness, iTL, against three other well-known community
mining approaches: SCAN [2], CFinder [31] and FastMod-
ularity [14].

1) Comparing on real world benchmarks: Figure 5 il-
lustrates how iTop Leaders (iTL) improves the set of com-
munities found by other methods. In this figure, red bars
represent initial community mining algorithm, green bars
represent iTop Leaders when seeded by the correct initial k.
This comparison may not be fair as we fed iTop Leaders by
prior knowledge of the network, i.e. number of communities
(k). To have more reasonable comparison, we also compared
all methods against iTop Leaders when fed by the k found
by those methods (i.e. blue bars). We could see that iTop
Leaders consistently improves on the other methods.

2) Comparing on synthesized benchmarks: To compare
with other methods, we generated larger LFR networks with
5000 nodes and different µ from .1 to .9 (with the average
degree of 15, the maximum degree of 50, community range
of 200 to 500 nodes). Figure 6 highlights the robustness of
iTop Leaders approach compared to FastModularity, CFinder
and SCAN. The first three plots compare the ARI of each
one of these three methods with iTop Leaders (seeded by
the k from that method) on networks with different mixing
parameter. In most cases and especially as µ increases, Top
Leaders improves upon the other methods.

3) Comparing on large scale real-world data set: On
the Amazon network, CFinder and SCAN did not terminate
successfully, iTop Leaders terminated 10 times faster than



(a) SCAN (b) CFinder

(c) FastModularity (d) GroundTruth

Figure 6. The first three plots compare ARI of iTop Leaders (iTL) and
other contenders as a function of mixing parameter µ. Figure 6(d) shows
the results of iTop Leaders given the correct k.

FastModularity (for the same k = 2303 obtained by Fast-
Modularity). When ground truth is not available, modularity
(Q) is typically used to assess the quality of discovered
communities. It measures how well the edges fall within
the communities compared to a randomized network. The
modularity is zero when the portion of within community
edges is not different from what we expect from a random-
ized network, and a value higher than 0.3 usually shows a
significantly good partitioning [14]. In our experiment, mod-
ularity of iTop Leaders was 0.45 compared to .77 modularity
of the result of FastModularity. Both rates guarantee that
the communities hold strong modularity. However this does
not show which algorithm is more accurate as the higher
modularity does not ensure a higher accuracy (we have seen
this in the previous experiments). Moreover our algorithm
detected 89865 hubs which are not member of any specific
community and this decreases the modularity significantly
because modularity does not consider hubs.

4) Parameters: The only parameter of iCloseness is the
neighbourhood threshold, δ. As described in III-A, δ deter-
mines the maximum neighbourhood level which should be
set based on the application. As we discussed, for social
networks a small diameter (e.g. 3) works fine.

Top Leaders algorithm on the other hand requires a few
parameters – k, γ and ε. The main parameter is k, the
number of desired communities. This may seem a major
hurdle. However, it is possible to obtain k after running other
contenders such as FastModularity, SCAN or CFinder and
provide the number of discovered communities to our algo-

Figure 7. Comparison of running time of iTop Leaders and other methods
for different number of nodes in the network.

rithm. Given this parameter, Top leaders always improves
upon the contenders in terms of quality of the communities
as demonstrated in our experiments. This is despite the fact
that in most of the cases this k is not correct or even close
to the correct value. FastModularity finds 12±6, CFinder
finds 1182±464 and Scan finds 299±127 communities in
the synthesized benchmarks when the average number of
communities in the ground-truth is 33±5.

The outlier threshold, γ, and the hub threshold, ε, control
the characteristics of the final output. If both are set to zero,
the clustering output would detect no outliers and the clusters
would be disjoint. By increasing the γ, more noise would be
eliminated from the data and by increasing the ε, clusters’
overlap increases. We set these two parameters to zero for
all the experiments except for Politician Books and Football
data sets, where finding hubs and outliers is desirable.

5) Complexity: The complexity of Top Leaders is O(kn),
the proof of which is similar to the one for k-medoids.
Figure 7 illustrates a comparison for the running time of
iTop Leaders, FastModularity, CFinder and SCAN. We have
generated the LFR data sets for varying number of nodes
(µ = .5). All experiments are performed on the same
machine and here we report the CPU time. The plot shows
that iTop Leaders scales reasonably well and outperforms
the speed of all contenders except CFinder.

V. CONCLUSIONS

We established a closeness measure, Intersection Close-
ness, to assess the proximity of a node to a community
representative. This measure iCloseness is based on the
theory of diffusion of innovation which states that the prob-
ability of joining a group depends on the number of existing
friends in the group and their connectedness. We applied this
measure to mine communities using the Top Leaders com-
munity mining algorithm, where this algorithm is adopted
to use iCloseness in assigning nodes to communities. The
experimental results of Top Leaders algorithm equipped with
iCloseness show high accuracy and effectiveness achieved in
both real and synthesized networks when compared against



commonly used closeness/distance measures as well as the
state-of-the-art community mining methods.
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