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Abstract. Cryptocurrency networks have evolved into multi-billion-dollar havens
for a variety of disputable financial activities, including phishing, ponzi schemes,
money-laundering, and ransomware. In this paper, we propose an efficient graph-
based method, SIGTRAN, for detecting illicit nodes on blockchain networks. SIG-
TRAN first generates a graph based on the transaction records from blockchain. It
then represents the nodes based on their structural and transactional characteris-
tics. These node representations accurately differentiate nodes involved in illicit
activities. SIGTRAN is generic and can be applied to records extracted from dif-
ferent networks. SIGTRAN achieves an F1 score of 0.92 on Bitcoin and 0.94 on
Ethereum, which outperforms the state-of-the-art performance on these bench-
marks obtained by much more complex, platform-dependent models.

1 Introduction

Blockchain-based cryptocurrencies, such as Bitcoin and Ethereum, have taken a con-
siderable share of financial market [11]. Malicious users increasingly exploit these plat-
forms to undermine legal control or conduct illicit activities [5,11,4,17]. In particular,
billions of dollars attained through illegal activities such as drug smuggling and human
trafficking are laundered smoothly through blockchain-based cryptocurrencies exploit-
ing their pseudonymity [21]. Given the openness and transparency of blockchain [19],
it is of paramount importance to mine this data for detecting such illicit activities.

Although the recent machine learning advances have enhanced the exploration of
large-scale complex networks, the performance of these methods relies on the quality of
the data representations and extracted features [14]. Likewise, in blockchain networks
with high anonymity and large number of participants with diverse transactional pat-
terns, any illicit node detection method is effective only when the extracted character-
istics of the data efficiently distinguish the illicit and licit components of the network.
Hence, developing effective illicit node detection method depends heavily on the ef-
ficiency of the data representations and extracted features. Considering that network
topologies can reflect the roles of the different nodes, graph representation learning
methods have been potentially conceived as great means for capturing neighborhood
similarities and community detection [22]. Additionally, machine learning analysis on
large networks is becoming viable due to the efficiency, scalability and ease of use of
graph representation learning methods [22,15].
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Driven by the need to enhance the security of the blockchain through transaction
network analysis, and by recent advances in graph representation learning, we propose
an efficient graph-based method SIGTRAN for detecting illicit nodes in the transac-
tion network of blockchain-based cryptocurrencies. SIGTRAN can be applied for warn-
ing honest parties against transferring assets to illicit nodes. In addition to providing
a trading ledger for cryptocurrencies, blockchain can be perceived as a network that
analyzing its dynamic properties enhances our understanding of the interactions within
the network [26,9]. SIGTRAN first constructs a graph based on the extracted transac-
tions from the blockchain ledger considering integral characteristics of the blockchain
network. Then it extracts structural, transactional and higher-order features for graph
nodes; these features strengthen the ability to classify the illicit nodes. SIGTRAN shows
superior performance compared to the previous platform-dependant state-of-the-arts
(SOTAs), while it is generic and applicable to different blockchain network models.
Particularly, SIGTRAN achieves an F1 score of 0.92 and 0.94 for detecting illicit nodes
in Bitcoin and Ethereum network, respectively. Moreover, SIGTRAN is scalable and
simpler compared to much more complex SOTA contenders. In short, SIGTRAN is:

– Generic: SIGTRAN is platform independent and applicable to different blockchain
networks, unlike current contenders.

– Accurate: SIGTRAN outperforms much more complex SOTA methods on the plat-
forms they are designed for.

– Reproducible: we use publicly available datasets, and the code for our method and
scripts to reproduce the results is available at: https://github.com/fpour/SigTran.

2 Background and Related Work

The increasingly huge amount of data being appended to the blockchain ledger makes
the manual analysis of the transactions impossible. Multiple works proposed differ-
ent machine learning techniques for detection of the illicit entities on cryptocurrency
networks [28,12,16,21,13,31]. Specifically, [12,16,28] investigate supervised detection
methods for de-anonymizing and classifying illegitimate activities on the Bitcoin net-
work. In parallel, Farrugia et al. [13] focus on examining the transaction histories on the
Ethereum aiming to detect illicit accounts through a supervised classification approach.

Lorenz et al. [21] address the problem of tracking money laundering activities on the
Bitcoin network. Concentrating on the scarcity of the labeled data on a crypocurrency
network such as Bitcoin, Lorenz et al. [21] argue against the unsupervised anomaly de-
tection methods for the detection of illicit patterns on the Bitcoin transaction network.
Instead, they propose an active learning solution as effective as its supervised counter-
part using a relatively small labeled dataset.

Previous work often focuses on analyzing the transactions on the cryptocurrency
networks with platform-dependent features, e.g. works in [25,27,21,13]. There are also
several task-dependent studies investigating a specific type of illicit activity, for example
[6,10] focus on ponzi schemes, which are illicit investments. Here, we propose a method
that is independent of the platform and/or task and looks at basic structural features
of the underlying transaction networks. This is inline with more recent graph based
methods which we summarize below.

https://github.com/fpour/SigTran
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Fig. 1: Overview of SIGTRAN to detect illicit nodes on a blockchain network.

Graph-based anomaly detection approaches have emerged recently as a promising
solution for analyzing the growing data of the blockchain ledger, for both Bitcoin [18],
and Ethereum [29,30,20,31]. In particular, Wu et al. [30] model the transaction network
of Ethereum as a multi-edge directed graph where edges represent transactions among
Ethereum public addresses, and are assigned weights based on the amount of transac-
tions and also a timestamp. They propose trans2vec that is based on adopting a random
walk-based graph representation embedding method and is specifically designed for
the Ethereum network. Weber et al. [28] model the Bitcoin transaction network as a di-
rected acyclic graph where the nodes represent the transactions and the edges illustrate
the flow of cryptocurrency among them. They construct a set of features for the trans-
actions of the network based on the publicly available information. Then, they apply
Graph Convolutional Networks to detect illicit nodes. For node features, they consider
local information (e.g. transactions fee, average Bitcoin sent/received), and other ag-
gregated features representing characteristics of the neighborhood of the nodes. In the
experiment section we show that SIGTRAN is more accurate than these two platform-
dependent SOTAs.

More generally, graph representation learning has became commonplace in network
analysis with superior performance in a wide-range of real-world tasks. As a pioneering
work, node2vec [15] explores the neighborhood of each node through truncated random
walks which are used for achieving representations that preserve the local neighborhood
of the nodes. RiWalk [22] mainly focuses on learning the structural node representations
through coupling a role identification procedure and a network embedding step. For a
more detailed survey of network embedding methods, see [14].

3 Proposed Method
Given the publicity of the transaction ledger, our aim is to detect illicit activities on a
blockchain-based cryptocurrency network. We formulate the problem as a node classi-
fication task in the transaction graph. Specifically, given the transaction records of a set
of blockchain nodes, we devise the transaction graph and investigate the authenticity of
different nodes by predicting the probability of each being involved in an illegitimate
activities such as phishing, scam, malware, etc. We propose an efficient feature vec-
tor generation approach for nodes in these networks which demonstrates node activity
signatures which can be used to distinguish illicit nodes. An overview of SIGTRAN
framework is illustrated in Fig. 1. SIGTRAN extracts the transaction (TX) history from
the blockchain ledger and constructs a transaction network from those records. To gen-
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Fig. 2: SIGTRAN creates a generic graph model based on the transaction networks.

erate node representations, it then extracts a set of useful features which are fused with
the corresponding node representations produced by a node embedding method. The
final representations are then classified to detect illicit nodes. These steps are explained
in detail in the following.

3.1 Transactions History Retrieval
The required transaction records can be obtained directly from the blockchain public
ledger of the target cryptocurrency. For instance, for Bitcoin or Ethereum, we can use
the client software of these peer-to-peer networks to pull down the blockchain data
in binary format which is converted to human-readable formats like CSV via an ap-
propriate parser. As an example, for converting the binary records of the Bitcoin and
Ethereum ledger, SoChain [1] and [3] can be employed respectively. The transaction
records contain details such as timestamp, amount sent or received, incoming and out-
going addresses, and other related information. Different authoritative websites (such
as EtherScamDB [2] for Ethereum network) helps in gathering a list of illicit nodes
on the blockchain network. Together transaction records and the information about the
authenticity of the network nodes constitute the dataset required.

3.2 Network Construction
A cryptocurrency transactions network is modeled as a graph demonstrating the inter-
actions among participants of the network. We model a blockhchain network as a graph
G = (V,E), where V represents the set of nodes and E expresses the set of edges.
Nodes and edges could have extra attributes, such as labels for nodes, and amount and
timestamp of transaction for edges. Essentially, blockchain networks can be classified
into two categories: (a) unspent transaction output (UTXO) model where the nodes
specify the transactions, and the edges denote the flow of the cryptocurrency among
nodes. Bitcoin, Dash, Z-Cash, and Litecoin are cyrptocurrencies based on the UTXO
model [26], and (b) account-based model, where the account addresses are considered
as the nodes and the transactions among addresses as the edges of the graph. Ethereum
network is based on the account-based model. Considering the different categories of
blockchain networks, we construct a generic graph model, as illustrated in Fig. 2, to
which the instances of both the UTXO as well as the account-based network models
are easily convertible. In the generic graph, the nodes specify the network entities in
which we are interested to investigate their authenticity, while the edges denote the
interactions among the nodes. The generated graph model entails any features asso-
ciated with the nodes, whereas multiple edges between any two nodes with the same
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direction are aggregated into a single edge. It is noteworthy that based on the underly-
ing blockchain network (i.e. UTXO or account-based), nodes and edges of the generic
graph can have different intuitions. Particularly, if the graph is constructed based on an
UTXO blockchain, the nodes represent cryprocurrency transactions which may belong
to licit or illicit categories of real entities. However, if the graph is constructed based
on an account-based blockchain, each node represents either an illicit or licit address.
In both cases, node representations and classification are applied incognizant of the
underlying blockchain model.

3.3 SIGTRAN

After modeling the blockchain transactions network as a graph, we need to develop
proper representations for the nodes. This consists of a set of carefully crafted features
which are fused with learned node representations, explained below respectively.
SIGTRAN-Feature Extraction. For each node u, we gain a diverse set of features
consisting of four main categories as follows. It is important to note that the features of
the nodes (e.g., labels) and edges (e.g., amount and timestamp) of the original network
are preserved in the constructed generic model, since we employ these attributes for
extracting the features of the nodes.
• Structural features consist of in-degree (Din(u) =

∑
v∈Nu

|evu|), out-degree
(Dout(u) =

∑
v∈Nu

|euv|), and total degree (Dtot(u) = Din(u) +Dout(u)) of node u.
As there may exist multiple edges between two nodes, |evu| determines the number of
edges from v to u, and Nu consists of all first-order neighbors of node u.
• Transactional features investigate the characteristics related to the amount and

time interval of the transactions. Indeed, blockchain specific information of the trans-
action network is mainly enriched in this set of features. Each edge euv from u to v is
associated with a set of attributes including the amount and time interval of the trans-
actions from node u to node v. For obtaining transactional features, we consider a set
of aggregation functions, G, which includes summation, maximum, minimum, average,
standard deviation, and entropy operations over an arbitrary given distribution x as fol-
lows:

G = {
∑

(x),max(x),min(x), x, σ(x), H(x)} (1)

With the set of aggregation functions G, transactional features of node u are defined as:

txamnt
u = {g(eau ) | g ∈ G, eau ⊆ {eauv, e

a
vu}}, txfreq

u = {g(eτu) | g ∈ G, eτu ⊆ {eτuv, e
τ
vu}}

where eau denotes the amount related to (in/out) edges of node u. Similarly, eτu denotes
the time interval related to (in/out) edges of node u.
• Regional features are defined with regard to the ego network of a node. We con-

sider the egonet of node u (Su=(Vu, Eu)) as a subgraph of the original graph consisting
of u and its first-order neighbors (i.e. Nu), with all the edges amongst these nodes. As
an example, considering the generic graph model in Fig. 2, the egonet of node0 consists
of {node1, node2, node4}. Having the definition of the egonet in mind, we consider the
number of edges of Su as one of the regional features of node u. Besides, the in-degree,
out-degree, and total degree of Su are considered as the other regional features accord-
ing to Din(Su) = |{ewv ∈ E | w /∈ Vu, v ∈ Vu}|, Dout(Su) = |{ewv ∈ E | w ∈
Vu, v /∈ Vu}|, and Dtot(Su) = Din(Su) +Dout(Su) , where Vu = u ∪Nu.
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• Neighborhood features analyze the aggregated characteristics of neighbors of
node u. Considering the aggregation functions in (1), the neighborhood features of node
u are defined as: Din(Nu) = {g(Din(v)) | g ∈ G, v ∈ Nu}, Dout(Nu) = {g(Dout(v)) |
g ∈ G, v ∈ Nu}, and Dtot(Nu) = {g(Dtot(v)) | g ∈ G, v ∈ Nu}.

Network Representation Learning. In order to learn node representations which
fuse topological perspectives of the nodes in a cryptocurrency transaction network, SIG-
TRAN combines the extracted features explained in above (which are obtained focusing
on the specific characteristics of the cryptocurrency networks such as amount and time
interval of transactions) with the node representations that are learned automatically
through a network embedding procedure. For retrieving more efficient node represen-
tations, we exploit a common network embedding method for learning the features of
the nodes in the generic graph model. Then, we fuse the extracted features with the
node embeddings in an effective manner so that the ultimate node representations ef-
fectively demonstrate the fundamental characteristics of the nodes. For fusing the ex-
tracted features and the node embeddigns, we investigate two approaches explained in
the following subsections.

RiWalk-enhanced. In this approach, we focus on the fact that nodes with different
functionalities have different roles in a network, and the structure of the network can be
investigated for gleaning these roles [22]. Hence, we consider the SIGTRAN-features
as powerful indicators of similarity among nodes, and decouple the node embedding
procedure into two steps. First, we identify the top ten SIGTRAN-features with the
highest importance in detecting the illicit nodes and retrieve the values of those features
for each node u as f∗u . We then relabel each neighbor of node u such as v according to
the function φ(v) = h(f∗u )⊕h(f∗v )⊕duv. Here, duv denotes the shortest path length from
u to v, ⊕ is the concatenation operation, and h(x) is defined as h(x) = blog2(x+ 1)c.
The new labels which are generated based on the node features roughly indicates the
role of the nodes (thus, Ri: Role identification). Thereafter, the second step consists of a
random-walk-based network embedding method for learning the node representations.
Specifically, we generate several random walks starting from each node, then merge
the random walks to construct a corpus and adopt the Skip-Gram model with negative
sampling of word2vec [24] to learn the node representations.

SIGTRAN. In this approach, we consider the fusion of the SIGTRAN-features and
automatically generated node embeddings through a concatenation procedure. Particu-
larly, we apply a random-walk-based node embedding method such as node2vec [15]
and for each node u obtain its embedding as e∗u. Then, we generate the final represen-
tations by concatenating the SIGTRAN-features f∗u with the node embeddings for each
node (i.e., e∗u ⊕ f∗u) intending to achieve accurate node representations.

3.4 Node Classification
The generated node representations can then be used in the downstream task for clas-
sification of the illicit and genuine nodes. The illicit node detection task is akin to the
common task of fraud detection and anti-money laundering applications. We simply
employ Logistic Regression for the classification task because of its widespread adop-
tion in similar tasks as well as its high interpretability [28,8,7,25]. This simple choice
enables us to better compare the effect of different embedding techniques.
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Table 1: Statistics of the investigated Blockchain-based Cryptocurrency Networks.

Dataset Nodes Edges Illicit Nodes

Bitcoin 203,769 234,355 4,545
Ethereum 2,973,489 13,551,303 1,165

4 Experiments

This section evaluates SIGTRAN experimentally. We present the datasets in Section 4.1,
baseline methods in Section 4.2, and discuss the results in Section 4.3.

4.1 Dataset Description
We investigated two real-world transaction datasets consisting of the most widely adopted
cryptocurrencies: (a) Bitcoin blockchain network which is the largest cryptocurrency
system based on UTXO model, and (b) Ethereum that support smart contracts, holds
the second largest cryptocurrency, and provides an account-based model.

We employed Bitcoin transactions dataset shared by Weber et al. [28] in which
21% of the transactions are labeled as licit (corresponding to different legitimate cat-
egories such as exchanges, miners, wallet provider, etc.), 2% as illicit (corresponding
to different categories of illegitimate activities such as scams, malware, ponzi scheme,
ransomeware, etc.), and there are no labels for the rest of the transactions. In addition
to the transaction records, the Bitcoin dataset consists of a set of handcrafted features
representing the characteristics of the considered transactions. Since the dataset is fully
anonymized, we could only generate structural, regional, and neighborhood features
for the nodes of the Bitcoin graph. We combined SIGTRAN-features with the initial
attributes available in the dataset to form the node features of the Bitcoin network. In
addition, we investigated the Ethereum transactions data shared by Wu et al. [30]. This
dataset consists of Ethereum transaction records for a set of addresses consisting of licit
addresses as well as illicit addresses reported to be involved in phishing and scam ac-
tivities. The statistical details of the Bitcoin and Ethereum dataset are shown in Table 1.

4.2 Baseline Methods
Several SOTA methods were evaluated and compared.

– node2vec [15] is a random-walk-based node representation method which employs
biased random walks to explore the neighborhood of the nodes with the consider-
ation of local and global network similarities. Default parameters of the node2vec
are set in line with the typical values mentioned in the paper [15]: context size
k = 10, embedding size d = 64, walk length l = 5, and number of walk per node
r = 20. We have also considered setting p = 0.25 and q = 4 to better exploit the
structural equivalency of the nodes according to the discussion in the paper [15].

– RiWalk [22] is another random-walk-based node embedding methods which fo-
cuses on learning structural node representations through decoupling the role iden-
tification and the network embedding procedures [22]. We considered the RiWalk-
WL which aims to imitate the neighborhood aggregation notion of the Weisfeiler-
Lehman graph kernels, and captures fine-grained connection similarity patterns.
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Table 2: Bitcoin performance: SIGTRAN significantly outperforms baselines on the
Bitcoin dataset. The last three rows are introduced in this paper.

Training Set Performance Test Set Performance

Algorithm Precision Recall F1 Accuracy AUC Precision Recall F1 Accuracy AUC

Weber et al. [28] 0.910 0.933 0.921 0.921 0.980 0.901 0.929 0.915 0.913 0.976
node2vec 0.626 0.300 0.405 0.560 0.580 0.627 0.312 0.415 0.563 0.580
RiWalk 0.556 0.348 0.426 0.535 0.556 0.549 0.343 0.421 0.530 0.547
RiWalk-enhanced 0.584 0.478 0.518 0.573 0.620 0.582 0.486 0.522 0.573 0.619
SIGTRAN-Features 0.911 0.936 0.924 0.923 0.980 0.905 0.926 0.915 0.914 0.976
SIGTRAN 0.898 0.940 0.919 0.917 0.978 0.890 0.947 0.918 0.915 0.976

Table 3: Ethereum performance: SIGTRAN significantly outperforms baselines on the
Ethereum dataset. The last three rows are introduced in this paper.

Training Set Performance Test Set Performance

Algorithm Precision Recall F1 Accuracy AUC Precision Recall F1 Accuracy AUC

trans2vec [30] 0.912 0.909 0.910 0.911 0.966 0.919 0.894 0.906 0.908 0.967
node2vec 0.908 0.935 0.921 0.920 0.970 0.917 0.907 0.912 0.912 0.964
RiWalk 0.922 0.772 0.840 0.852 0.904 0.931 0.764 0.838 0.853 0.894
RiWalk-enhanced 0.921 0.846 0.882 0.887 0.908 0.928 0.832 0.877 0.884 0.899
SIGTRAN-Features 0.926 0.945 0.935 0.934 0.962 0.923 0.926 0.925 0.925 0.958
SIGTRAN 0.946 0.953 0.949 0.949 0.983 0.944 0.940 0.942 0.942 0.976

We also compared the performance of SIGTRAN with methods specifically designed
for Bitcoin or Ethereum network.

– Bitcoin: we considered the method proposed by Weber et al. [28] as the baseline.
– Ethereum: we considered phishing scams detection method by Wu et al. [30] de-

noted as trans2vec as the baseline method. To make a fair comparison, we set the
default parameters of trans2vec inline with the parameters of the node2vec.

4.3 Performance Evaluation

To evaluate the performance of SIGTRAN, we considered the illicit nodes as the target
of the detection approach and randomly selected an equal number of genuine nodes
to form our set of anchor nodes. We extracted the first-order neighbors of all the an-
chor nodes and all edges among these nodes to construct a subgraph for investigation.
Random selection of genuine nodes was repeated for 50 times, thus 50 different sub-
graphs were examined and the average performance was reported. Logistic regression
with L1 regularization was implemented in Scikit-learn Python package as the node
classifier. The performance evaluation results for the Bitcoin and Ethereum network
are illustrated in Table 2 and Table 3, respectively. To investigate the importance of
SIGTRAN-features, both tables also report the performance of the classification tasks
when only SIGTRAN-features were used as the node representations.
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(a) SIGTRAN (b) SIGTRAN-features (c) RiWalk-enhanced

(d) RiWalk (e) node2vec (f) TX network

Fig. 3: Bitcoin Embeddings: SIGTRAN better separate illicit (red) and genuine (blue)
transactions in Bitcoin network (plotted in (f)) compared to other baselines.

Bitcoin. Considering the results of illicit node detection on Bitcoin network in Ta-
ble 2, it can be observed that node embedding methods namely node2vec and RiWalk
did not generate efficient node representations. Therefore, the classification task had
very low performance in detecting illicit nodes. The poor performance of node2vec
and RiWalk is due to the fact that these methods are not specifically dealing with the
intrinsic characteristics of financial networks, such as having multiple edges among
nodes, or being dependent on the amount and time interval of the transactions. These
methods mainly focus on exploiting the structural similarities in order to maximize the
likelihood of preserving neighborhoods of nodes. However, the results demonstrate that
ignoring the specific characteristics of cryptocurrency networks, such as amount and
timestamp of the transactions, results in embeddings that are not efficient for achieving
decent illicit node classification performance. On the other hand, methods likes Weber
et al. [28] and SIGTRAN that are designed specifically for cryptocurreny networks show
much better performance. Superior performance of SIGTRAN compared to Weber et al.
[28] is due to its extended set of features as well as the exploitation of the structural
information via node embedding methods. It is noteworthy to mention that SIGTRAN
is more efficient than the proposed RiWalk-enhanced method. This can be attributed to
two main reasons. First, in RiWalk-enhanced, we employed the extracted features only
for relabeling the nodes. Although the labels of the nodes impact the node embeddings,
the exact values of the extracted features do not directly influence the embeddings val-
ues which are later used for the node classification task. Moreover, it should be noted
that the new labels combine the extracted features of the anchor and neighbor nodes
as well as their shortest path distance. Thus, modified values of the extracted features
are used for labeling. However, it is noteworthy that RiWalk-enhanced outperforms its
counterpart RiWalk, which underlines the importance of fusing the extracted features
with the node embeddings in terms of improving the performance of the node classifi-
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(a) SIGTRAN (b) SIGTRAN-features (c) RiWalk-enhanced

(d) RiWalk (e) node2vec (f) TX network

Fig. 4: Ethereum Embeddings: SIGTRAN better separate illicit (red) and genuine
(blue) accounts in Ethereum network (plotted in (f)) compared to other baselines. No-
tice the red nodes mixed in the blue cluster in (c-e).

cation task. For a qualitative comparison of the different embedding methods, we have
depicted the t-SNE [23] transformations of different node representations methods for
one of the subgraphs of the Bitcoin network in Fig. 3. According to Fig. 3, it can be ob-
served that the embeddings produced by SIGTRAN shape more separable distributions.

Ethereum. For the Ethereum dataset as shown in Table 3, it can be observed that
SIGTRAN demonstrates considerably better performance than the other methods. Al-
though trans2vec and node2vec demonstrate high performance, the superior perfor-
mance of SIGTRAN underlines its efficiency in employing the native characteristics
of the cryptocurrency networks as well as structural information obtained by the node
embedding methods. Besides, we can observe that the extracted features improved the
performance of the RiWalk-enhanced compared to RiWalk. Due to the fact that SIG-
TRAN better incorporates the extracted features with the network structural embed-
dings, it achieves the most decent performance on the Ethereum network as well. We
have also depicted t-SNE [23] transformations of different node embedding methods
for a subgraph of the Ethereum network in Fig. 4. Considering Fig. 4, it is observable
that embeddings obtained by SIGTRAN show considerable distinction between illicit
and licit nodes, while for example in Fig. 4e, there are several illicit nodes (marked
with red) in the licit cluster (marked with blue).

5 Conclusions

We propose SIGTRAN that extracts signature vectors for detecting illicit activities in
blockchain network. Our proposed SIGTRAN transforms the blockchain network into
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a simple graph and then extracts carefully designed features which explain structural,
transactional, regional, and neighborhood features of the nodes. These features are then
combined with generic node representations which encode the roles of the nodes in
a given graph. SIGTRAN should be considered as a simple and strong baseline when
developing more complex models. Our proposed SIGTRAN baseline is:

– Accurate: SIGTRAN outperforms state-of-the-art alternatives in detecting illicit ac-
tivities in blockchain transaction records.

– Generic: SIGTRAN is platform independent and we apply it to blockchain data
extracted from both Bitcoin and Ethereum.

Reproducibility: the code and data are available at https://github.com/fpour/SigTran.
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