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ABSTRACT
Much of the data of scientific interest, particularly when in-
dependence of data is not assumed, can be represented in the
form of information networks where data nodes are joined
together to form edges corresponding to some kind of associ-
ations or relationships. Such information networks abound,
like protein interactions in biology, web page hyperlink con-
nections in information retrieval on the Web, cellphone call
graphs in telecommunication, co-authorships in bibliomet-
rics, crime event connections in criminology, etc. All these
networks, also known as social networks, share a common
property, the formation of connected groups of informa-
tion nodes, called community structures. These groups are
densely connected nodes with sparse connections outside the
group. Finding these communities is an important task for
the discovery of underlying structures in social networks,
and has recently attracted much attention in data mining
research.

In this paper, we present Top Leaders, a new community
mining approach that, simply put, regards a community as a
set of followers congregating around a potential leader. Our
algorithm starts by identifying promising leaders in a given
network then iteratively assembles followers to their closest
leaders to form communities, and subsequently finds new
leaders in each group around which to gather followers again
until convergence. Our intuitions are based on proven obser-
vations in social networks and the results are very promis-
ing. Experimental results on benchmark networks verify the
feasibility and effectiveness of our new community mining
approach.

1. INTRODUCTION
Previous data mining approaches, such as association rule

mining, supervised classification or clustering algorithms,
usually attempt to discover patterns in a data set charac-
terized by a collection of independent instances, which is
consistent with the classical statistical inference problem of
trying to identify a model given an independent, identically
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distributed (IID) sample [15]. However, a new emerging
challenge for data mining researchers is to solve the pattern
discovery problem on data sets which are richly structured
and mostly heterogeneous. Such data sets are usually mod-
eled as information networks and contain different object
types, which can be related to each other in multiple ways,
e.g., commercial data describing connections between cus-
tomers, products and transactions. Näıvely applying tra-
ditional statistical inference procedures, which assume that
instances are independent, can lead to inappropriate conclu-
sions about the data [19]. For example, for a search engine,
indexing and clustering web pages based on the text con-
tent without considering their linking structure would defi-
nitely lead to unsatisfactory results for queries. Therefore,
for a pattern mining problem, the relations between objects
should be taken into consideration and can be very impor-
tant for understanding the intrinsic structure of the data
and knowledge patterns.

Nowadays, in myriad application domains we are collect-
ing inter-related data in the form of networks such as in
marketing, biology, epidemiology, sociology, criminology, zo-
ology, etc. A common trait of today’s social networks or
information networks, and many other scientific datasets, is
their community structure, which denotes the existence of
densely connected groups of nodes, with sparser connections
between these groups. Finding these communities could be
of significant practical importance to understand the corre-
sponding data, such as organizational structures, academic
collaborations and the user communities in a telecommuni-
cation network. For example, groups of web pages that link
to more web pages in the community than to pages outside
might correspond to sets of web pages on related topics,
which can enable search engines and portals to increase the
precision and recall of search results by focusing on nar-
row but topically related subsets of the web [14]. There-
fore, Community Mining, which focuses on the detection
and characterization of such network structure, has received
considerable attention over the past few years in social sci-
ences, such as psychology, anthropology, criminology, etc.,
and lately computer science, particularly data mining.

There are several definitions for communities in the net-
work, but there is no generalized consensus. For instance, a
community can be seen as a subgraph such that the density
of edges within the subgraph is greater than the density of
edges between its nodes and nodes outside it [17]. From that
perspective, identifying communities can be seen as find-
ing node clusters in a graph, or graph partitioning. Others
have defined a community membership based on a notion of
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structural similarity[39] allowing the additional distinction
of hubs that bridge between communities and outliers that
are marginally connected.

Recently, many community mining approaches have been
proposed to detect communities for various types of social
networks [16, 9, 28, 8, 32, 39, 5, 6]. While many show
promising results, most of them still present issues. Either
they have parameters notoriously difficult to tune or they
simply assume that we have no prior knowledge of the com-
munities and the network in question, i.e., there is no further
information of the community detection request aside from
the network itself. However, this is not always the case. For
example, a business network analyst may only show interests
in the top-K trading company communities in size; a blog
network about US political elections has exactly two com-
munities. Moreover, a visualization systems could help in
collecting rough information about a network which could
in turn be exploited to discover more accurate structures.
Therefore, while proposed methods undeniably have their
merit, it is necessary to investigate means for community
mining that could utilize any available knowledge of the net-
work to improve the accuracy and efficiency of community
detection.

In this paper, we present a new community detection ap-
proach based on finding top-k leaders in an information net-
work. Different from previous methods, we exploit prior
knowledge of the given network, such as the desired num-
ber of communities to be found or the extent of the noise
in the data. In our work, we consider that each community
has a representative leader node, which is the most central
node in the corresponding community, and a community is
a set of follower nodes assembling close to a leader. Briefly,
our approach first finds promising leader nodes in the given
network, then iteratively updates communities and their cor-
responding leaders until there is no change in the commu-
nities. This scheme is very similar to the partitioning phi-
losophy adopted in clustering such as with k-means, except
that while k-means is infamously sensitive to noise, our ap-
proach, Top-Leaders, allows us to identify marginal nodes
in a network as outliers and thus is not affected by noise.

After discussing related work in Section 2, we propose our
Top-Leaders algorithm in Section 3. We show later in the
experiments in Section 4 that our approach accurately ex-
tracts communities based on our iterative strategy. In com-
parison with other known methods, we consistently discover
the most accurate results.

2. RELATED WORK
The research topic of social network analysis is not new

and has been the focus of many scholars in anthropology
and psycology for many decades. Detecting communities
in a social network structure has also been pursued by so-
ciologists and more recently physisists and applied mathe-
maticiens with applications to social and biological networks
[26]. With the availability of large datasets of information
networks, computer scientists have also joined the effort and
community mining is becoming a very popular research en-
deavour. This line of research is addressing similar question
as graph partitioning. There are, however, important differ-
ences between the goal and applications of the two camps,
graph partitioning and community mining, that make quite
different technical approaches desirable [27].

There is a long tradition of research by computer scien-

tists on graph partitioning, which is described as dividing
the vertices of a network into some number of k groups with
roughly equal size, while minimizing the number of edges
that run between vertices in different groups. Generally,
finding an exact solution for a partitioning task is believed
to be an NP-complete problem, making it extremely difficult
to solve for large graphs. Nevertheless, a wide variety of al-
gorithms have been developed that provide high quality solu-
tions in many cases: METIS [20], flow-based methods [14],
information-theoretic methods [11] and the Kernighan-Lin
algorithm [21]. The major incompatibility of these methods
is that community structure detection assumes that the net-
works divide naturally into some partitions and there is no
reason that these partitions should be of the same size.

Another important family of graph partitioning algorithms
is the spectral clustering method [29], which divides the net-
work into two groups by looking at the eigenvector corre-
sponding to the second lowest eigenvalue of the adjacency
graph Laplacian and separating the vertices by whether the
element is greater than or less than zero. Division into a
larger number of groups is usually achieved by repeated bi-
section. Unfortunately, the sizes of the groups into which
the network is divided need to be fixed, but are usually un-
known beforehand. Additionally, if we set the group sizes to
be unconstrained, the method (and other methods that min-
imize cut size without constraints on the group size) could
break down: the minimum cut size is always achieved by
the trivial division which puts all vertices in one group and
none in the others. Several methods have been proposed to
fix the problem, such as ratio cut [4], normalized cut [36],
and the min-max cut [12]. However, these approaches are
biased in favor of divisions into equal-sized parts.

Therefore, in their study of social networks, sociologist
have taken no notice of the aforementioned spectral cluster-
ing or other graph partitioning methods, and have instead
adopted hierarchical clustering [35] as the standard method.

The main idea of the hierarchical clustering method is
to discover natural divisions of social networks into groups,
based on a metric measuring the similarity between vertices
in a graph. There are many similarity metrics proposed to
measure the community relation in networks [5, 9, 16, 18,
28, 30]. Among them, the Modularity Q [28, 9], is the most
effective in finding communities [10] and serves as the basis
of many other later proposed metrics.

The modularity Q is proposed as a measure of the quality
of a particular division of a network. The basic idea is to
compare the division to a randomized network with exactly
the same vertices and same degree, in which edges are placed
randomly without regard to community structure.

Values of Q that are close to 1, which is the maximum,
indicates strong community structure. Q typically falls in
the range from 0.3 to 0.7 [16] and high values are rare.

In addition to the prominent Q-modularity approach [9]
that we mention above and against which we compare our re-
sults, there are two other worth mentioning algorithms that
are not only innovative in the process of discovering commu-
nities but are also highly effective in many cases: CFinder
published in Nature and SCAN published in KDD. We also
compare our results with these two contenders. Palla et al.
[32] propose the CFinder system to partition complex net-
works into overlapping communities. Based on the obser-
vation that typical communities consist of several complete
subgraphs sharing many of their nodes, the authors define
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a community as the union of complete subgraphs of size k.
In other words a k-clique community is the union of all k-
cliques that can be reached from each other through a series
of adjacent k-cliques, where “adjacent” means two k-cliques
sharing k− 1 nodes and k is a given parameter as the clique
size. There are some parts of the whole network that are
not reachable from a particular k-clique, but they poten-
tially contain their own k-clique communities. Therefore,
a single node can belong to several communities. Gather-
ing adjacent small k-cliques to form communities in large
networks is very efficient but the authors also showed that
with k between 3 and 5 the approach is very effective on real
world information networks.

Rooted in the well known density-based clustering algo-
rithm DBScan [13], Xu et al. derived a similar approach
for information networks and proposed the SCAN algorithm
[39] to detect not only clusters, but also hubs and outliers in
networks. Like the notion of reachability in DBScan, the
neighbourhood of a vertex is used as a criteria for clus-
tering and nodes that are structurally reachable from each
other are grouped together in the same community. Their
performance appears very good but it is highly dependant
on the two parameters: the structural similarity threshold
for a “core” vertex and the minimum number of neighbours
needed to propagate the reachability. This sensitivity of the
parameters was addressed using a visual data mining ap-
proach [7]. The latter approach is also useful as a means to
get a sense of the number of the natural communities that
exist in a network and can be used as preprocessing for our
own algorithm to identify the the number of leaders k if it is
not apriori known. Moreover, the FastModularity [9] based
on the Q-Modularity can also be used as precursor to our al-
gorithm to determine k before improving on the community
membership accuracy with our approach.

3. TOP LEADERS APPROACH
Top-Leaders consists of selecting k representative nodes,

that we call leaders, then associate remaining nodes of the
network, the followers, to leaders to form communities. An
iterative process till convergence elects new leaders for each
community and reassigns nodes to the leaders to form new
communities. Convergence is attained when the best leaders
are found and each node is associated to its most appropri-
ate leader. In this section we present in detail this new
approach for detecting communities and elucidate the pro-
cesses of selecting the initial leaders, associating followers to
a leader, and electing new leaders. The basic idea of our
approach is inspired by the well-known k-means clustering
algorithm. However, there are many differences, particularly
the fact that we can detect outliers. Similar to k-means, our
algorithm is sensitive to its initialization, the selection of
the initial k leaders. We have experimented with a variety
of strategies, from a random selection à la k-means to more
advanced heuristics. We present in this section some of these
strategies.

3.1 Common Framework
A community leader is the most central member in a com-

munity and each community is constituted of a leader and
the follower nodes associated to it. Some nodes in the net-
work may not be associated to any given leader and thus do
not belong to any community and are considered outliers.
The basic idea of the Top Leaders algorithm, is to first find

some k community leaders, and then determine the com-
munity membership of other nodes in the network based on
their relations to the identified leaders.

Algorithm 1 highlights the major steps of Top Leaders.
The first step is the selection of the initial k leaders by some
heuristics. This initialization is described below in Section
3.3. The second step is an iteration in which we alternate
between association of followers and election of new leaders.
First, nodes are either associated to a leader or labeled as
outliers (elaborated further in Algorithm 2), and second,
when all nodes in the network are dealt with, a new leader
is picked in each community. The reassignment of leaders is
simply the election of the node with the highest centrality
in a community.

arg max
n∈Community(l)

Centrality(n)

The centrality of nodes in a community measures the rel-
ative importance of a node within that group. There are
many measures of centrality that could be parameter to the
algorithm, namely degree, betweenness, closeness and eigen-
vector centrality measures. We experimented with them all
and based on our results, we selected the degree centrality
for the default measure which yeilds the most accurate re-
sults in most of the cases and also is easy to compute. The
degree centrality for a node n within a community is sim-
ply the number of edges from the community incident upon
n and represents to some extent the “popularity” of n in
the community. For a community C of size N , the degree
centrality of a node n in C is

DC(n) =
deg(n, C)

N − 1

where deg(n, C) is the number of edges in C incident upon
n. Consequently, for each community, the centrality of every
member is computed and the node with the highest degree
is selected as new leader.

Algorithm 1 Top Leaders algorithm

Input: A social network G, and k the number of desired
communities

initialize k leaders
repeat
{finding communities}
for all Node n ∈ G do

if n /∈ leaders then
associate n to a leader {Algorithm 2}

end if
end for
{updating leaders}
for all l ∈ leaders do

l ← arg maxn∈Community(l) Centrality(n)
end for

until there is no change in the leaders

Below, we focus on the initialization of leaders and on how
to associate nodes to leaders.

3.2 Associating Nodes to Leaders
With leaders representing communities, the community

membership of the remaining nodes is the association of fol-
lowers to nearby leaders. For each node, n, in the network
its relation to each leader, l, is assessed by computing the
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L1 L2n

(a) Intersection of neighbourhoods

n
L1 L2

(b) Expanding Neighbourhoods

Figure 1: Determining community of node n: n should be
assigned to leader L1 because a) n has more common neigh-
bours with L1 than L2, b) although n has the same number
of common neighbours with L1 and L2, it has more common
neighbours with L1 if we expand its neighbourhood bound-
ary by one.

size of intersection of this leader’s neighbourhood and the
n’s neighbourhood, i.e., how many neighbours they have in
common (Figure 1a).

Moreover, for finding the leader for a given node, we con-
sider different levels of neighbourhoods for that node. We
start assessment by neighbourhood depth 1 (which consists
of the nodes that are directly connected to this node). If
there are more than one leader for this node we would ex-
pand the node’s neighbourhood by one (by adding nodes
that are directly connected to the current nodes in its neigh-
bourhood). We keep expanding the neighbourhoods as long
as there are ties up to the neighbourhood depth threshold(δ).

Algorithm 2 depicts the process of associating a node
to its appropriate leader. Where ℵ(n, d) denote the set of
nodes in neighbourhood depth d of node n. And |S| shows
cardinality(size) of set S.

To detect outliers in the network, we define an outlier
threshold (γ). Only leaders that have more common nodes
than this threshold with the given node are considered. If
after reaching the neighborhood threshold, the node is still
not assigned to any of the current leaders; it is marked as
an outlier. Hubs are those nodes that follow more than
one leader. They sit on the intersection of communities.
The algorithm is not sensitive to the value of δ. We have
experimented with a variety of networks and different depth
have given the same result. Thus, we set the δ threshold
at 2. The γ outlier threshold can on the other hand give
different results. When we know that no outliers exist in
the network, γ is set to 0. Otherwise γ depends on the
density of the network, and to correctly identify outliers, γ
could vary between 1 and 4 in most cases.

3.3 Initialization Methods
Like with any partitioning process, the initialization is

Algorithm 2 Associate n to its leader

Input: Social network G, node n, set of k leaders

depth ← 1
CanList ← leaders
repeat

CanList← arg max
c∈CandList∧

|ℵ(n1,d)∩ℵ(n2,d)|>γ

|ℵ(n1, d) ∩ ℵ(n2, d)|

depth ← depth+1
until |CanList|≤ 1 ∨ depth > δ

if |CanList| = 0 then {No candidate leader}
associate n as an outlier

else if |CanList| > 1 then {Many candidates}
associate n as a hub

else {Only one candidate leader in CanList}
associate n to CanList

end if

crucial. Starting with the correct leaders allows quick con-
vergence while starting with the wrong leaders will necessi-
tate many iterations and may get stuck in a bad local opti-
mum. This is a known problem with k-means for instance
and many ways out were suggested in the literature such
as running the nondeterministic algorithm multiple times
or suggesting heuristics for the selection of better starting
points. We experimented with myriad strategies specific to
information networks and report here some initializations
from a näıve random selection of leaders to a more elaborate
approach. We highlight herein these initialization methods
and show their impact in the experiments in Section 4.

3.3.1 Naïve Initialization
The näıve initialization is a random selection of k nodes

from the network. This is simple but is not deterministic
and may lead to bad results.

3.3.2 Top Global Leaders
Founded on the fact that community leaders are central

nodes in their community, this initialization method picks
the k most central nodes in the network as the initial lead-
ers. This approach is also näıve because while community
leaders are indeed central in their respective communities
there is no reason that they should be the most central in
the global network. In fact this methods produces good re-
sults in some cases but it yielded results worse than random
in some others. On average, however, this strategy seems
satisfactory. We added a variation such as selecting ran-
domly k leaders from a larger set ck of most central nodes
in the graph where c is a constant. However, this did not
produce better results and in addition is non deterministic.

3.3.3 Top Leaders & not Direct Neighbour
The major drawback of Top-Global-Leaders is the fact

that it is possible that two of the most central nodes be-
long to the same community. Choosing arbitrarily the k
most central nodes may force a community to split and this
would negatively affect the final results. Therefore we pro-
pose to choose the k most central nodes that are not directly
connected to each other which avoids choosing leaders in the
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same community. To implement this strategy we start from
the most central node, and add the next central one to the
current set of leaders if it is not directly connected to any of
the already selected leaders.

3.3.4 Top leaders & Few Neighbours in Common
Top Leaders & not Direct Neighbour method improves

the result significantly but still produces inaccurate results
in some cases. This intermittent inaccuracy is due to the
fact that being direct neighbours does not exclude being in
different communities. Therefore, the method could occa-
sionally mistakenly avoid choosing two correct leaders that
are directly connected but truly in different communities.
To steer clear from this problem, instead of using a simple
direct connectivity, similar to the main framework, we as-
sess the intersections to check if these nodes belong to the
same community. The computation is simply after starting
with the most central node, we add the next central one
to the current set of leaders after checking its intersection
size to the already selected leaders. In our implementation,
two leaders would be deemed to have less than 5 common
neighbours. This value was tested and is stable with most
networks we encountered.

4. EXPERIMENTS
We evaluated the accuracy of our proposed approach by

comparing its results with the true communities in well-
known data sets for which we have ground truth. Here we
introduce these data sets and evaluation metrics, then report
and discuss our results on these data sets.

4.1 Data sets

4.1.1 Karate Club
This network is drawn from the well-known “karate club”

study of Zachary [40]. In this study, relations between 34
members of a karate club over a period of two years are ob-
served. During the study, a disagreement developed between
the administrator and the teacher of the club, which even-
tually made the club split into two smaller ones, centering
around the administrator and the teacher, represented by
node 34 and node 1. Zachary was able to construct a net-
work of friendships, using a variety of measures to estimate
the strength of ties between members.

4.1.2 Strike
This is the communication network of employees in a sawmill

[31]. This data is collected in order to analyze the commu-
nication structure among the employees after a strike. An
edge in the network means that the two connected employees
have discussed the strike with each other very often. There
are three groups according to age and language.

4.1.3 Football
This dataset is the schedule for 787 games of the 2006

National Collegiate Athletic Association (NCAA) Football
Bowl Subdivision [39]. In the NCAA network, there are
115 universities divided into 11 conferences. Additionally,
there are 4 independent schools, namely Navy, Army, Notre
Dame and Temple, as well as 61 schools from lower divisions.
Each school in a conference plays more often with schools
in the same conference than schools outside. Independent
schools do not belong to any conference and play with teams

in all conferences, while lower division teams play very few
games. The network contains 180 vertices (115 nodes as
11 communities, 4 hubs and 61 outliers), connected by 787
edges.

4.2 Evaluation Metrics
We evaluated extracted communities by both comparing

with ground truth and by measuring their modularity.

4.2.1 Comparing with Ground Truth
With ground truth validation is simply accomplished by

means of comparison of communities, those discovered against
the known communities. We used measures of agreement
between partitions typically employed for clustering evalu-
ations: purity and Adjusted Rand Index. Let V be the set
of all nodes in communities at let R = R1, R2, . . . , Rk be a
partitioning on V such that V =

Sk
1 Ri and Ri ∩Rj = φ for

all i 6= j. Let n be the size of V (n = |V |), and assume R
and G are two different partitioning of the same data.

Purity is the number of correctly assigned nodes di-
vided by the total number of nodes in V . Purity ranges
from 0 (no agreement at all) to 1 (full agreement). It
is computed using the following formula [24]:

purity(R, G) =
1

n
×

X
j

maxi|Rj ∩Gi|

Adjusted Rand Index (ARI) The measure penal-
izes false negatives and false positives. ARI ranges be-
tween −1 (no agreement at all) and 1 (full agreement)
with expected value of 0 for agreement no better than
random. Let a,b,c and d denote the number of pairs
of nodes that are respectively in the same community
in both G and R, in the same community in G but in
different communities in R, in different communities
in G but in the same community in R, and in differ-
ent communities in both G and R. Then the ARI is
computed by the following formula [33]:

ARI =

`
n
2

´
(a + d)− [(a + b)(a + c) + (c + d)(b + d)]`
n
2

´2 − [(a + b)(a + c) + (c + d)(b + d)]

a =
P

vw δ(Rv, Rw)δ(Gv, Gw)
b =

P
vw(1− δ(Rv, Rw))δ(Gv, Gw)

. . .

Where Rn = {Ri|n ∈ Ri} and δ(R1, R2) is 1 if R1 =
R2 and 0 otherwise (c and d obtained similarly). To
compare data sets with outliers, we simply treat out-
liers as another community.

4.2.2 Modularity
When ground truth is not available, modularity (Q) is

typically used to assess the quality of discovered communi-
ties. It measures how well the edges fall within the detected
communities compared to a randomized network. More for-
mally, assume R is a partition of the network with adjacency
matrix A containing m edges (m = 1

2

P
vw Avw); then, given

δ(R1, R2) is 1 if R1 = R2 and 0 otherwise, the portion of
edges within communities is

1

2m

X
vw

Avwδ(Rv, Rw)
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The modularity is defined as substraction of this quantity
from its expected value for a randomized network (with same
nodes where edges created randomly but with respect the
node degrees). Which can be computed as

Q =
1

2m

X
vw

[Avw −
dvdw

2m
]δ(Rv, Rw)

Where dv denotes the degree of node v (dv =
P

w Avw). The
modularity would be zero when the portion of within edge
communities is no different than what we expect from a ran-
domized network, and a value higher than 0.3 is a sign for
significantly good partition [9]. For networks with discov-
ered outliers, modularity is computed without the outliers.

4.3 Results and Discussions
We report the results for different initialization methods

and show a comparison with three of other well-known com-
munity detection methods.

4.3.1 Initialization methods
Table 1 shows the improvement of our results by devel-

oping the initialization of our algorithm. As shown in Ta-
ble 1, even the Näıve initialization gives reasonable results
but with high variance. The Top Global Leaders improves
the results significantly and reaches the maximum ARI in
Karate and Strike but the best cases in the Näıve initializa-
tion for the Football data set still do better. This indicates
room for improvement. Examining the initial leaders ob-
tained from the Top Global Leaders (TGL) and locating
them in the network, indicates that some of these leaders
are in the same community in the ground truth and choos-
ing them as leaders, forces that community to split.

Top Leaders & not Direct Neighbour (TL&NDN) initial-
ization do not improve the results which shows that the con-
dition of not being direct neighbour is not a good one; since
it would not avoid choosing leaders in the same community
if they are not directly connected which is very probable. It
also may avoid choosing two true leaders which are in differ-
ent communities and directly connected. The former is also
very probable as the leaders are nodes with high centrality
and may have links to outside of the community.

Top Leaders & Few Neighbours in Common (TL&FNiC)
method gives us the best result. This method makes a
greedy selection, starting from the node with the highest
centrality to the lowest, we chose one if it does not have
more than a threshold neighbours in common with any of
the current leaders.

The visualized results of these three data sets are pre-
sented in Figure 2. These figures also show the correct com-
munities as we obtained ARI 1 except for the football data
set where we misidentified four hubs and assigned them to
one community.

4.3.2 Parameters
Our main parameter is the number of communities in the

network. This should either be given by domain experts or
obtained from another algorithm for community mining that
does not require k. However, even the algorithms claiming
not requiring this parameter do not find the right number
in many cases: fastModularity and cFinder find 3 and Scan
finds 4 communities in Karate which has really only 2. For
Strike with 3 communities, cFinder finds 6. Similarly for
Football there are discrepancies (Table 2). Based on results

Table 1: Results of different initialization methods. For
the Näıve method, average±standard deviation is calculated
over 100 runs. All the results have the same default param-
eters (neighborhood threshold = 2, initialization threshold
= 5 (nodes in common)) except the number of communities
for each data set. (karate=2, strike=3, football=11) and the
outlier threshold which is 4 for football but zero for karate
and strike as we do not want to detect any outliers in those
data sets.

method dataset ARI purity Q

Näıve
Karate .80±.33 .90±.20 .28±.13
Strike .59±.25 .81±.13 .41±.12

Football .39±.12 .66±.08 .27±.07

TGL
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .83 .88 .43

TL&NDN
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .78 .88 .42

TL&FNiC
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .98 .97 .51

in Table 2, using TopLeaders after another community de-
tection approach provides k, would increase the quality of
the final results significantly based on Modularity. In other
words, if we trust the number of communities discovered
by a community mining approach, seeding this number to
TopLeaders would increase the quality of discovered com-
munities.

We have three more parameters which are all integers in
small range and easy to tune. The first one is the out-
lier threshold, γ. This parameter shows how many common
nighbours should a node have with a leader to be consider
connected to that leader. That is, if a node has less than
γ common friends with the leader, it does not have a con-
siderable intersection with it and could not be part of its
community. γ is an integer set to 0 (no outlier detection),
left at 4 (default value), or adjusted according to desired
amount of noise that should be removed.

For the two other parameters, our algorithm does not ex-
hibit any sensitivity and they can remain at their default
values. The first is the threshold used in the Top Leaders &
not Direct Neighbour initialization. It is set to 5 in all our
experiments, indicating that two leaders may be in the same
community if they have more than 5 common friends. The
second is the neighbourhood threshold, δ, which shows to
what extent we should expand our neighborhood to find the
winner leader. Setting this parameter to 2 gives us the re-
ported results and increasing it does not change the results.

4.3.3 Comparing with other approaches
Tables 2 shows a comparison between our approach and

three well-known algorithm: FastModularity, cFinder and
SCAN. Given the correct initial k, TopLeaders always pro-
vides the best result. The other methods do not always find
the correct k but even when seeded to TopLeaders, our ap-
proach improved the quality of the found communities based
on ARI.
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Table 2: Comparision with other approaches. Column k
indicates the number of communities obtained

dataset method k ARI purity Q

Karate
2 groups

fastModularity 3 .680 .970 .380
cFinder 3 .705 .065 .182
TopLeader(3) .838 1.0 .374
SCAN 4 .314 .764 .312
TopLeader(4) .788 1.0 .361
TopLeader(2) 1.0 1.0 .371

Strike
3 groups

fastModularity 4 .664 .958 .555
TopLeader(4) .935 1.0 .532
cFinder 6 .348 1.0 .485
TopLeader(6) .609 1.0 .457
SCAN 3 .848 .958 .547
TopLeader(3) 1.0 1.0 0.548

Football
11

groups

fastModularity 7 .206 .427 .567
TopLeader(7) .637 .783 .394
cFinder 12 .983 .913 .532
TopLeader(12) .993 .977 .511
SCAN 11 1.0 1.0 .501
TopLeader(11) .988 .977 .513

5. CONCLUSIONS
We introduced a novel algorithm, Top Leaders, to mine

communities in an information network, which assigns nodes
to leaders of communities and selects the leaders of commu-
nities iteratively. This algorithm is effective in discovering
communities and also in identifying outliers in a network.
We applied the algorithm to known real world networks
with ground truth. The experimental results confirm the
accuracy and effectiveness of our algorithm. Top Leaders re-
quires k, the number of desired communities as input. This
may seem a major hurdle. However, it is possible to obtain
k after running other contenders such as FastModularity,
SCAN or CFinder and provide the number of discovered
communities to our algorithm. Our experimental results
proved that communities obtained in this way are more ac-
curate than the original discovered communities even if the
used method detected wrong number of communities.
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(a) Karate (b) Strike

(c) Football

Figure 2: Visualized communities detected using Top Leaders algorithm. These communities correspond to the results reported
on the last row of Table 1.
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