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ABSTRACT
How can we help an investigator to efficiently connect the dots
and uncover the network of individuals involved in a criminal ac-
tivity based on the evidence of their connections, such as visiting
the same address, or transacting with the same bank account? We
formulate this problem as Active Search of Connections, which
finds target entities that share evidence of different types with a
given lead, where their relevance to the case is queried interactively
from the investigator. We present RedThread, an efficient solution
for inferring related and relevant nodes while incorporating the
user’s feedback to guide the inference. Our experiments focus on
case building for combating human trafficking, where the inves-
tigator follows leads to expose organized activities, i.e. different
escort advertisements that are connected and possibly orchestrated.
RedThread is a local algorithm and enables online case building
when mining millions of ads posted in one of the largest classified
advertising websites. The results of RedThread are interpretable, as
they explain how the results are connected to the initial lead. We
experimentally show that RedThread learns the importance of the
different types and different pieces of evidence, while the former
could be transferred between cases.
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1 INTRODUCTION
Studying how elements of data are connected to each other can
help uncover salient patterns in data. The connections between
data elements are often assumed to be observed, at least partially.
However, in many real-world applications, these connections are
not given a priori and need to be inferred from the available data. Ex-
treme examples include the covert networks of terrorists, criminals,
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(a) Local Clustering (b) Active Search on Graph

(c) Active Exploration (d) Active Search of Connections

Figure 1: For a given seed query, a local clustering algorithm finds
closely related nodes to the seed, and an active search algorithm
finds the relevant nodes to the seed. RedThread finds related and
relevant nodes, similar to the active exploration, while inferring the
relations at the same time.

their accomplices and their victims, which are intentionally hidden.
Although invaluable, the process of extracting such networks is
usually difficult and laborious. Known as link charts in the law en-
forcement setting, the common practice is for an expert to manually
link the entities of interest by examining the evidence of their asso-
ciation, e.g. shared addresses, related bank accounts, etc. [20, 45, 47].
This is often facilitated by visualization tools with built-in database
lookups. The majority of research efforts is devoted to the analysis
of these networks after they are extracted [7, 25, 44, 45], e.g. to de-
tect influential members. Here, we present an interactive approach
for more efficient extraction of these connections, using an active
learning framework.

We introduce the problem of Active Search of Connections, i.e.
to infer the connections between entities from the evidence available
in data, where the user is able to provide feedback and guide the net-
work inference. Active Search of Connections is closely related to
local clustering, active search and active exploration on graphs.
However, the solutions for those problems can not directly be ap-
plied in this setting. Local clustering on graphs [23, 39] (Fig. 1a)
also commonly known as local community detection, finds a group
of well-connected nodes to the seed query. In our setting, not all
the closely related nodes are relevant to the case. Active search on
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graphs [12] (Fig. 1b) finds the maximum number of relevant nodes,
i.e. nodes of the same target class as the seed query, by query-
ing few labels from the user. This algorithm explores the entire
graph assuming that relevant nodes are scattered, however, Ac-
tive Search of Connections searches for nodes whose connection
can be explained to the case. Our proposed RedThread solution for
Active Search of Connections, also queries a limited number of
labels from the user but to locally retrieve the maximum number
of nodes related and relevant to the given seed. This is closer to
active exploration [15, 28] (Fig. 1c) which also finds connected and
relevant nodes. These methods, however, are built for when con-
nections are observable, for example when crawling the web for
relevant content, where hyperlinks are observed once reaching a
page. Unlike the problems above, for Active Search of Connections
(Fig. 1d) connections are not observed and are inferred from data.

Active Search of Connections is potentially useful in a wide
range of domains, wherever connections between entities are
not given a priori, in particular for mapping out the covert web
of entities in fraud detection, counter-terrorism, or tracking online
sales of illegal goods (weapons, drugs, etc.). We are particularly
motivated by its application to support law enforcement for case
building in counter human trafficking operations. This paper
complements the recent efforts to develop data-driven techniques
for tracking online human trafficking [3, 11, 17, 29, 34, 40, 42]. For
case building and target identification in this domain, an initial
lead is probed to find connected entities and eventually identify
the person of interest. Currently, this task is performed by an ex-
pert investigator through manual exploration of the available data.
RedThread makes this process semi-automatic and more efficient.

RedThread is designed to find organized activities in online
escort ads, i.e. ads marketing different potential victims which are
linked by different types of evidence, e.g. phone numbers, catchphrases,
misspelling and other text patterns, images with the same background,
or other evidence of connection. An example case built by RedThread
is illustrated in Fig. 2. In this figure, the lead ad is the green node.
From this lead, RedThread retrieved other relevant ads through
the shared evidence, in this case mostly bigrams. Between these,
there are ads for a different person who is being advertised by the
same phone number. Phone numbers are used as oracle label in this
case, i.e. RedThread learns to find persons being advertised by the
same phone number. In practice, when the human investigator is
available, the phone numbers are added to the evidence set instead
of being put aside as training labels, which boosts the algorithm’s
effectiveness in finding advertisements posted by the same person.

We have applied RedThread to find similar cases in millions of
escort ads posted on Backpage.com for cities across the U.S. and
Canada posted between 2013 to 2017. We model this data as a
k-partite graph, in which ads are connected to various types of evi-
dence they share, e.g. phone numbers, urls, images, names, bigrams.
The user’s feedback is then used to guide the navigation through
the graph when finding ads related to the given seed. RedThread
learns the relative importance of each type of evidence (e.g. phone
numbers would become stronger indicators than bigrams), as well
as the relevance of specific pieces of evidence (e.g. some phone
numbers are relevant to the current seed). The main intuition of
RedThread is that the candidates for inclusion into the case graph
are explored in order of how well-connected they are to the labeled

True $pinner~-Outcall Specials All Night    
Hello, gentlemen my name is Samantha. I'm a small town girl . I'm only 4ft 11 100 lbs and a lot of 
fun call 24* *** **49 I prefer upscale, out going gentlemen who can appreciate a fine beauty and not 
afraid to experience his inner wild side with me. My companionship is always confidential Im discreet, 
prompt,and professional...I would love to hear from YOU!!! Ask for Samantha 24* *** **49 Outcall HOT Specials

Petite LIL Hottie--Outcall Specials   
Hi I am Megan 24*-*** **49, I am exactly what you are 
hoping four First off I am real.What you see is what see get. 
{it's all good!} Secondly I am also whatever fantasy you 
can have with a 4'9 girl who whats to 24* *** **49 
OUTCALL SPECIALS! My are very REAL RECENT...NEW PICS!!! 
Upon meeting you will find that Iam even sexier in person 
ASK FOR MEGAN24*-*** **49,

Petite LIL Hottie $pinner~Outcall Specials -   
Hi! I am Samantha 4'11 And only 100LB! 
I am Exactly what you are hoping for. 
First off,I am real. What you see is what you 
get (and it's all good). Secondly, I am also 
whatever Fantasy you can have with a 'girl 
who wants to please. I truly enjoy it! I am fun
 exciting and fulfilling! CALL ME NOW! 
Samantha 24* *** **49 ASK ABOUT MY 
~OUTCALL SPECIALS

Figure 2: Example Case Built by RedThread. The green ad (top)
shows the seed. The black nodes are the discovered ads which are
connected to the seed though shared evidence, plotted as red nodes.
The text-box on the top left shows the content of the seed ad, and
the bottom right text-box shows the content of a sample connected
ad advertising a person with a different name and height.

nodes already explored, whereas the importances of these connec-
tions are updated incrementally based on the user’s feedback.

In our experiments, we also use two publicly available datasets
not related to escort ads to show RedThread’s general applicability:
(i) a music record dataset where RedThread retrieves records of the
same artist, and (ii) a news dataset where RedThread finds memes
originating from the same source. In all our datasets, RedThread
achieves significant improvements over the baselines, including
a random-walk which restarts given negative feedbacks. To sum-
marize, our main contributions are twofold: first, we introduce
the novel problem of Active Search of Connections motivated by
its application in case building; second, we present RedThread
method as an efficient, local and interpretable solution. For repro-
ducibility, our source code is made publicly available at: https:
//github.com/rabbanyk/RedThread.

2 RELATEDWORK
Related work in Section 2.1 overviews the application-related
works on analyzing online escort advertisements, and Section 2.2
covers theory-related algorithms to Active Search of Connections.

https://github.com/rabbanyk/RedThread
https://github.com/rabbanyk/RedThread


2.1 Analyzing Online Escort Advertisements
Online classified advertising and social networking websites pro-
vide easy to use and low-risk platforms for traffickers which give
them a sense of anonymity and enable wide geographic reach [21,
30, 37]. Millions of dollars are spent on online escort advertise-
ments yearly. For example, Backpage.com, one of the main hubs,
was estimated to have had a gross revenue of 120 million dollars
(which contributed to more that 90% of its total revenue) from es-
cort advertisements in 2014, according to court documents [32].
A majority of sex-trafficking victims (minors and adults who are
being forced or coerced to provide sex commercially) are marketed
online according to a recent survey [41]. The National Center for
Missing and Exploited Children reports a 14-fold increase in reports
of suspected child sex trafficking in 2014, which is correlated with
the increased use of the online escort advertisements market [31].

Given the scale and importance of the problem, there have been
multiple recent efforts to i) capture and extract information from
the web mainly in form of knowledge graphs [17, 19, 40], e.g. to
recognize location, name and age mentions in the ads, ii) discern
patterns in the data [11, 27] e.g. frequency of ads around Super
Bowl events, iii) train classifiers to flag suspicious ads given a small
ground-truth of phone numbers associated with known traffickers
[2, 3, 11, 29, 34, 42] based on textual features extracted from the
content of the ads and the images associated with them, and iv)
train classifiers to predict if two ads are related or not using strong
link, i.e. phone numbers, as training labels, where features are ex-
tracted from content of the ads [29], and inferred bitcoin wallets
information [34]. The latter link prediction methods are the most
relevant to this paper, since we are also trying to find connections
between the ads. RedThread is different in three ways from these
methods. First, RedThread is a local and scalablemethod. It avoids
computing pairwise similarities between the ads, which is unfea-
sible when facing millions of advertisements. Second, RedThread
explains how ads are connected by the exact pieces of evidence
they share, which is required for the produced link charts to serve
the intended law enforcement usage. Third, RedThread is learning
interactively from the investigator, to improve its performance.
In our experiments, we use hard identifiers such as phone numbers
as a proxy for a human expert for evaluation purposes since using
an actual expert is not possible for experiments. In practice, the
phone numbers will be part of the evidence set and the labels will
be queried actively from the user. This adaptability is not available
with the current classifier based techniques which also use the hard
identifiers –phone numbers– as the training labels, e.g. [29, 34].

2.2 Active Search, Exploration and Clustering
Selective labeling in active learning enables analyzing data where
labels are scarce. Here a given number of labels, determined by
the query budget, can be queried from the user/oracle during the
learning. In this setting, the task of recovering only the relevant
portion of the data is known as active search [12, 13]; where the
objective is to achieve the highest recall for a given class, instead
of the overall classification accuracy. When targeting a specific
class is the goal, e.g. for detecting fraud, drug discovery, or our case
building problem, the active search technique can achieve better
performance compared to the uncertainty sampling common in

active classification [12, 13, 43, 43]. Active search methods formu-
late the problem as a sequential Bayesian decision theory problem
and derive an optimal policy which is exponential and needs to
be approximated using a fixed lookahead, using specific bounds
to prune the search space, and narrowing the search spaces using
a k-nearest-neighbor graph which allows only strategizing over
similar states. In our case, even building the k-nearest neighbor
graph is infeasible due to the scale of the data.

RedThread uses a similar learning framework but provides a
local and efficient solution which draws inspiration from the
developed optimal policy of these methods, i.e. sampling highly
correlated regions [13].

Local clustering algorithms, a.k.a. community detection, are gen-
erally applied to when data is large scale. While global clustering
algorithms partition a given graph, the local methods retrieve a
cluster by expanding from a given seed node. Although the rele-
vant entities in Active Search of Connections are assumed to be
highly connected, the objective is different from the clustering
algorithms, as we are interested in finding entities with positive
labels which reflect the user’s interest. There are several local graph
clustering algorithms which also incorporate attributes for nodes
[1, 8, 9, 24, 33, 39, 46]. These approaches consider attributes as an
additional information source or metadata on the nodes, and de-
velop unsupervised algorithms to cluster this heterogeneous data.
RedThread however is proposing a semi-supervised or active para-
digm, where we are using the labels on the nodes, provided by the
expert user, as the true clustering. In this sense, RedThread is also
closely related to active exploration [15] or selective harvesting
[15, 28]. These methods however assume the graph is (partially)
observable, which is not true in our case. RedThread infers the
connections at the same time as finding the relevant nodes.

Finally, RedThread is also related to measuring proximity in
graphs [38], to build the k nearest neighbor structure to search
over [12], and various graph extraction techniques [10, 14, 26] and
relational data knowledge base extraction methods [16, 35, 36].
These problem settings however differ from ours as RedThread
focuses on a local active setting targeted at finding related enti-
ties. Another class of related works are entity resolution methods
[4–6], which try to find references to the same underlying entity.
RedThread is interested to find different entities (two or more possi-
ble victims) which are being advertised in the same fashion. In our
experiments, we use a basic entity resolution technique to detect
repetitive ads of a same person posted over time (with minor modi-
fications), in order to both avoid querying the user with duplicate
ads, and to trim the case being built.

3 PROBLEM DEFINITION
Consider n datapoints D = {d1,d2 . . .dn } connected to k different
types of evidence (e.g. phone number, image, bi-grams) which we
refer to as modalities. Let evidence set

E = {X1,X2 . . .Xk } (1)

denote the set of indicator matrices for these k modalities, i.e. Xm ∈

Rn×cm+ form ∈ [1 . . .k]; where cm is the cardinality (number of
unique pieces of evidence) of modalitym (e.g. number of unique
phone numbers). Each column of Xm shows a set of datapoints that
share the corresponding evidence (e.g. datapoints that all share a



particular phone number), and each row of Xm shows the pieces of
evidence associated to the corresponding datapoint (all the phone
numbers mentioned in a particular datapoint). Shared evidence
across modalities for two datapoints i and j can be derived as:

s (i, j ) = ∪m {u ∈ [1 . . . cm] | [Xm]iu > 0 ∧ [Xm]ju > 0}

Given the evidence set E, Active Search of Connections finds
datapoints of interest which are related to the given seed i through
shared evidence; whereas being of interest is queried from the user
or oracle. More precisely,

Definition 3.1 (Active Search ofConnections). Given seed
i ∈ D, evidence set E (Eq. (1)), and a fixed query budget,
0 < b << n, find the maximum number of related and rel-
evant entities to i . Datapoint j is considered relevant and
related to i iff r (i, j ) = 1, i.e.

r (i, j ) = 1 ⇐⇒ i = j∨ {∃k , r (i,k ) = 1∧yj = 1∧s (j,k ) , ∅}

where we assume the unknown label yj ∈ {−1, 1} can be
queried from the oracle for each j ∈ {1..n}.

We emphasize that in Active Search of Connections, labels are
local and depend on the given seed, since they indicate whether
other datapoints are related to the current case. This is different
than the usual active search framework where the labels are global
and positive labels might not be connected through the structure,
for instance in active search on graphs [43] where the example task
is to retrieve all the nips papers in citeseer, i.e. nodes are either
positive or negative regardless of the seed node.

4 METHODOLOGY
We can consider each indicator matrix in the evidence set E repre-
sents the incidence matrix of a hypergraph, or the feature matrix
of the datapoints, or the biadjacency matrix of a 2-partite graph.
We will adopt the latter in the rest of the paper, from which all the
modalities form a k-partite graph representation for the data. We
refer to this as k-modal evidence (KME) graph. More specifically,

Definition 4.1 (k-modal evidence graph). Given evidence set E
construct a heterogeneous graph with vertex set

V =
k⋃

m=1
{um1 ,u

m
2 , . . .u

m
cm }︸                      ︷︷                      ︸

VE : evidence nodes

∪ {v1,v2 . . .vn }︸           ︷︷           ︸
VD : datapoint nodes

where {um1 ,u
m
2 , . . .u

m
cm } are cm nodes corresponding to the pieces

of evidence of typem, i.e. the unique values of modalitym (e.g. one
node per each phone number); and {v1,v2 . . .vn } show the nodes
corresponding to the n given datapoints ( e.g. one node per each
advertisement). Edge set of this representation is then defined as:

E = {(vi ,uj ) | [Xm]i j > 0,vi ∈ VD ,uj ∈ VE }

which considers an edge between each data point and every evi-
dence it is associated with, e.g. edges would be formed from the
node corresponding to the ith advertisement, vi , to the pieces of
evidence in that advertisement, phone numbers, images, etc.

Given this k-modal evidence graph and seed node of interest
vi , the Active Search of Connections translates to finding nodes in

u1
2 m

v2
u1 u1

u2

1 {evidence modalitiesvn

v1

vi

u2
u2 m21

X1 X2 Xm

y1 > 0

seed

Figure 3: k-modal evidence graph: nodes consist of datapoints and
different types of evidence associated with them; edges derive from
the evidence indicator matrices, and labels are queried from the
user.

VD that are (tightly) connected to node vi with even length paths
(i.e. through shared evidence) and are relevant to the seed (i.e. have
positive labels).

In the next section we propose RedThread which navigates
through this graph to efficiently find these nodes while learning the
importance of each modality and each piece of evidence from the
labels (user’s feedbacks) obtained while expanding. Before that, we
start with describing the general learning framework and baselines.

4.1 Basic Baselines
The baseline algorithms as well as the RedThread have an iterative
nature. The algorithms start from the given seed, and in each it-
eration picks another datapoint that it deems related to the seed,
then queries the user to see if this is correct i.e. observes the label.
Algorithm 1 outlines this framework.

Algorithm 1 Iterative Labeling (seed , X1 . . .Xk , oracle, budget)

1: b ← 0 // initialize query counter
2: L ← {seed : 1} // initialize labeled hash
3: while b < budget do
4: j ← inf er ( {X1 . . . Xk }, L) // pick a datapoint j
5: if j < L then
6: L[j]← oracle (j ) // query user if j is relevant
7: b ← b + 1
8: end if
9: end while

4.1.1 Random (Rand). The most naive baseline picks a data-
point at random, while ignoring both the given evidence and user’s
feedbacks. In other words, the function in f er () in algorithm 1 sim-
ply chooses j from {1 . . .n} uniformly at random.

To make use of the available evidence, the following algorithms
construct the k-modal evidence graph of definition 4.1 (KME), and
navigate through it. From here on we use i and vi interchangeably
to denote the ith datapoint and its corresponding node in the graph.

4.1.2 Random Walk (RW ). This baseline expands from the seed
by randomly walking through its neighbors, querying labels from
the expert on each encounter of an unlabeled node. In more details,
given seed node v , N (v ) = {u |(v,u) ∈ E} gives the pieces of
evidence connected tov , from which an evidence node u is selected
uniformly at random to expand from, that is by randomly choosing
the next node from the neighbors of u which are not previously



labeled as negative, i.e. N (u) \ L−, where L− = {j ∈ L|yj < 0}.
This process repeats until budget is exhausted and restarts from the
seed whenever it gets a negative feedback. In this way, the random
walk is taking into account the feedbacks by only expanding on
positives. We are not, however, learning what caused the algorithm
to reach to a positive or negative instance. The aspect missing here
is present in the heart of RedThread, which learns the importance
of different pieces of evidence and types of evidence as it acquires
labels. Before moving to the description of the learning mechanism,
we discuss one more baseline which uses a weighting scheme to
adjust the importance of different pieces of evidence.

4.1.3 Random Walk Adjusted by Inverse Degree (wRW ). Con-
sidering rare pieces of evidence are more telling, here we pick
the evidence nodes proportional to the inverse of their degree, i.e.
probability of u being selected is

pu ∝
1
du

where du denotes the degree of evidence u, du = |N (u) |. Since
the random walk still picks the neighbors of the evidence nodes
uniformly at random, the transition probability from node vi to
vj through evidence u would be 1/d2u . This is analogous to re-
weighting the edges connected to the evidence nodes by their in-
verse degree, which RedThread also uses. This weighting scheme
resembles the popular inverse document frequency commonly used
in information retrieval.

4.2 RedThread
RedThread considers weights for different modalities (evidence
types), assuming that some evidence are stronger than others, e.g.
sharing a phone number is a stronger indicator of two ads being
related than advertising persons with the same names. Moreover,
given the current seed node, specific pieces of evidence become
more and more relevant as they point to more positive instances,
therefore the weight of evidence should also be adjusted as we get
more labels. In the following, we first describe the parameters of
RedThread, then explain how RedThread adaptively learns these
parameters as labels are acquired, and applies them to infer the best
node to query next from the user for labeling.

4.2.1 Weighing the Modalities. RedThread considers a weight
for each partition of the KME graph to enforce the importance of
its corresponding modality in the given evidence set, i.e.

Θ = [θ1,θ2, . . . θk ]

Here θm denotes the weight/importance of modalitym. Correspond-
ingly, RedThread considers the evidence flow coming from each
partition separately, i.e. let s jm show the evidence support for vj
from modalitym, then we consider a tie-strength vector for each
expansion candidate vj as:

sj = [s j1, s
j
2, . . . s

j
k ]

4.2.2 Computing the Evidence Flow. We can consider s jm simply
as the number of (length two) paths that go through evidence nodes
in partitionm to reachvj . To enforce the hypothesis that rare pieces
of evidence are more important, RedThread further weighs down
the pieces of evidence by their prevalence (the number of datapoints

they are associated with) measured as their degree in the graph. In
more detail, if node vi and vj are connected through evidence u,
this evidence contributes to their tie strength by 1/d2u , as each edge
is down weighted by the degree. Moreover, the tie strength score
of reaching vj is summed from all the currently explored (labeled)
positive nodes as

s
j
m =

∑
vi ∈L+

∑
u ∈Nm (vi )∩Nm (vj )

1
d2u

(2)

where L+ = {j ∈ L|yj > 0}, and Nm (v ) = {um |(v,um ) ∈ E}.

4.2.3 Inferring from the model and learning from feedback. To
infer the next node, RedThread chooses the node with highest
overall evidence support, as1:

j∗ ← argmax
j

∑
m

s
j
mθ

j
m (3)

Now let node vj denote this last queried node, for which we
observe the label yj . RedThread adjusts the modality which most
supported the selection of node j , i.e. it first determines the support
modality,

m∗ = argmax
m

s
j∗
mθm (4)

Then it adjust the importance/credit of the modalitym∗ as:

θ∗m =



δθ∗m yj∗ < 0
(2 − δ )θ∗m yj∗ > 0

(5)

where δ ∈ (0, 1) is the learning rate. This penalizes or rewards
the supporting modality based on the positive and negative labels.
We note that this learning mechanism is inspired by the weighted
majority voting and minimum regret learning.

4.2.4 Initialization. Prior information on the importance of dif-
ferent modalities (e.g. phone number more important than uni-
grams) could be easily incorporated into the model as the initial
values for Θ. When no such information is available, Θ is initialized
uniformly. In applications where cases are similar across different
seeds, i.e. same evidence types are always important, e.g. phone
numbers in our case building, the modality weights learned from
one seed could be transfered to the next seed as initial parameters.

4.2.5 Re-Weighing the evidence. Given the observed negative
labels, one can adjust the weights of different pieces of evidence,
assuming some pieces of evidence (within or across different modal-
ities) point to more relevant nodes. To enforce this, we re-weigh the
pieces of evidence proportional to how many positive v.s. negative
instances they point to. In more detail, instead of Eq. (2) we use:

s
j
m =

∑
vi ∈L

∑
u ∈Nm (vi )∩Nm (vj )

δ (i )

d2u
(6)

where δ (j ) = 1 if yj > 0 and δ (j ) = −1 when yj < 0.

1We have experimented with a non-deterministic version that picks nodes with prob-
ability proportional to these scores, however the presented deterministic version
achieves better performance in practice.



4.2.6 Computational Efficiency and Implementation. RedThread
uses local computation similar to local clustering methods. It main-
tains a priority queue to keep track of the top candidate for expan-
sions (i.e. for computing Eq. (3)). The size of this queue is limited
to be much smaller than the actual size of the graph. We observe
experimentally than changing the queue size does not affect the
performance significantly. RedThread also keeps a shell structure,
which maintains the tie strength of nodes surrounding those in the
queue. In each iteration that a new label arrives, only the scores for
the nodes in the shell are updated, and they might enter the queue
based on their updated score.

4.3 Decompositional Baselines
To better evaluate the performance of the RedThread and the ef-
fect of different its components, we consider four more baselines
descried as follow.

4.3.1 RedThread without Feedback (NF). This baseline uses the
scoring scheme described in Section 4.2.2 to expands from the node
with the current maximum score, using Eq. (3), but ignores the
feedback from the user. The resulted algorithm is similar to a local
clustering where expansion is purely based on the connectivity.

4.3.2 RedThread without Parameters (NP). This baseline con-
sider feedback by only expanding from positive nodes, but does not
have any parameter learning.

4.3.3 RedThread without Modality Parameters (NM). This base-
line uses the feedback to re-weigh the pieces of evidence using the
procedure described in Section 4.2.5. However the importance of
different modalities is not adjusted by the feedback.

4.3.4 RedThread without Evidence Weights (NE). This baseline
uses the feedback to learn the importance of different modalities
but skips the re-weighing of the evidence (Section 4.2.5).

In the next section, we present a selected set of experiments to
showcase the effectiveness of the proposed RedThread.

5 EXPERIMENTS
Here we first describe our datasets, then compare the performance
of the RedThread with different baselines introduced in Section 4.

5.1 Datasets
Our data consists of advertisements scraped from escort section
of Backpage.com for cities across the United States of America,
Canada, and their territories from August 2013 to January 2017. For
each advertisement, we have access to its unstructured text (title
and body), attached images, date and location posted. Overall, we
have about 40 million advertisements. We use a publicly available
regular expression extractor, which is developed for the same data
previously[11] to extract basic features from the advertisement
text, which are: phone number, email, url, name. We also extract
unigrams and bigrams used in both title, and body2. From these
advertisements, we build three datasets, one restricted by location,
and two by time. One of these time periods is chosen to include

2Filtering those that appear in more than 10,000 advertisements, to trim out stop words
and common phrases. We apply the same cutoff also to other evidence types, e.g. to
filter out smiley images, or other common images.

DMV DJF SUS
datapoints advertisements 2,611,636 1,432,066 3,934,482

evidence types

title_unigram 80,006 81,833 133,682
body_unigram 196,855 211,114 329,398
title_bigram 546,847 542,437 920,051
body_bigram 1,474,490 1,548,091 2,437,285
date(day) 1,629 90 184
image(hashcode) 1,156,719 588,774 2,338,285
nickname 10,264 10,973 15,438
location(city/state) 30 512 511
url 13,557 16,316 25,814
email 3,854 4,105 6,943labels
phone numbers 189,210 215,447 378,403

Table 1: Statistics for Three HT Datasets, namely DMV (DC, Mary-
land, Virginia), DJF (December 2013, January 2014, February 2014),
and SUS (July 2013 to December 2013 with contain suspicious ads).
Each row gives the number of unique pieces of evidence for the
corresponding type/modality across different datasets. Last three
modalities are left out as oracle labels.

Discogs MemeTracker
datapoints master release 3,515,407 meme 1,531,687

evidence types

date 8082 date 31
country 267 link 3,514,970
track 13,078,458 unigram 761,599
company 322,258 bigram 8,285,661
genre 15
record label 526,441
catalog number 2,699,059
style 478
artist 1,181,652 url 140,316labels extra artist 2,076,945

Table 2: Statistics for Two Public Datasets, namely Discogs and
MemeTracker. The first row is corresponds to the main datapoints,
and the last row is the modality treated as labels. Middle rows show
different features/evidence types in these two datasets (note that we
have smaller set of indicators for MemeTracker).

activities associated with a list of phone numbers reported to a
victim advocacy groups [11]. Table 1 reports the basic summary
statistics of these datasets.

For the evaluation of the algorithms, and since labels are not avail-
able in these datasets, we keep out of the graph some modal-
ities that strongly indicate relations between ads to derive
labels. In more detail, we construct labels by connected compo-
nents formed when only using url, email, and phone numbers. This
means that two ads are assumed ‘truly’ related only if they share
at least one of these hard identifiers3. Here, the RedThread will
only use the first eight evidence types reported in Table 1 to in-
fer relations. In practice however, RedThread will use all the 11
evidence types available as evidence and hence the performance
reported here is a lower-bound on its true performance, since the
strongest types of evidence are masked in our experiments to be
used as labels.

We also include two publicly available datasets in our experi-
ments. This further shows the generality of RedThread when
applied in different domains. The first dataset is the Discogs
from KONECT[18] which is collected from a large online music
database, and provides information about different releases: date of
3We further split these components when not reachable by the remaining evidence.
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Figure 4: Overall comparison with baselines on the three human
trafficking datasets of Table 1. In each boxplot, first three methods
(green and blue) show the basic baselines, the next four (yellow)
show RedThread without one of its components, and the last one
(red) corresponds to the RedThread. In the left column, algorithms
reset the parameters per each seed. On the right, weights are trans-
fered to the subsequent seeds.

the release, artists (primary and extra) involved, record labels, track
information, companies involved in the production of the release,
etc. Full list of entities and their frequencies (number of unique
values) is reported in Table 2. In this dataset we treat artists as
true labels and consequently RedThread is learning to find releases
of the same artists4 as the given seed release based on their shared
information. The second dataset is MemeTracker from SNAP[22].
This data contains frequent quotes and phrases used in the news.
We take a subset of total datasets, i.e. over 1.5M memes posted
between April 1th to May 1th 2009. Each meme has the posted date,
and a set of links it points to, and we further extract unigram and
bigrams from their content. For the true labels, we consider the
domain of the url in which the meme is posted. Hence RedThread is
learning to find memes which are originated from the same domain
as the given seed, based on how they share terms, pointers, and
temporal co-occurrence.

5.2 Performance Comparison with Baselines
We compare the general performance of RedThread against differ-
ent baselines discussed in Section 4.1. In particular, Fig. 4, Fig. 5 and
Fig. 6 compare the number of relevant entities found by different
methods when query budget is fixed to 40. These figures show the
distribution of number of relevant entities retrieved for 100 seeds 5.

In Fig. 4 we see that expanding only based on topology and ig-
noring the user’s feedback (NF) is showing very low performance
(on par with Rand). This would correspond to the performance of

4Note that a release might have more than one artist, hence more than one label. Any
two releases with overlapping sets of artists are considered related.
5The exact experiment settings for reported results are learning rate of 0.3 and queue
size of 1000; however, similar trends are observed for other settings reported in the
supplementary materials accompanying the code. To have enough relevant entities to
search for, seeds are either selected randomly from ads connected to the largest label
components (in Fig. 6), or large enough components (in Fig. 4) selected at random.
A label component consists of all connected nodes of the same label which is the
ground-truth; in other words, it is a maximal set of datapoints that are relevant and
related to each others as defined by Definition 3.1.
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Figure 5: Per seed comparison with baselines. Similar to Fig. 4, we
compare when the parameters reset per each seed (left) and when
weights are transfered to the subsequent seeds (right). These scatter
plots compare performance of RedThread with each algorithm per
seed, i.e. points above the diagonal are the seeds in which the corre-
sponding baseline has higher accuracy than RedThread. Seeds of the
same dataset are marked with the same color, i.e. the green, blue
and red colors represent seeds corresponding to the three human
trafficking datasets of Table 1.

an unsupervised local clustering algorithm. Moreover, performance
is only slightly better for the random walk variations which use
the feedback to restart (RW andwRW ) but ignore the importance
of different modalities and don’t remember the factors that resulted
in reaching a negative. The variations of RedThread which only
consider weights on evidence (NM) or modalities (NE) are also not
doing as well as when incorporating both in RedThread. We further
see that in general transferring weights improves the performance
of RedThread in these datasets. The choice to transfer or reset de-
pends on whether the modalities have the same importance across
cases or not, which depends on the applications, For the two public
datasets we observe a better performance when reseting between
seeds, which is reported in Fig. 6. We can also see the precision per
seed node in scatter plots of Fig. 5 6. Here, the x-axis shows the
precision of RedThread and the y-axis shows the precision of the
corresponding baseline. We can see that a significant majority of
the seeds fall below the x=y line, i.e. in which case the baseline has
lower precision compared to RedThread. In this figure, the three
colors correspond to the three human trafficking datasets of Table 1.

5.2.1 Filtering Near Duplicates in Escort Advertisements. In the
human trafficking datasets it is common to have a large number
of near duplicates, i.e. the same advertisement posted repeatedly
over time. We filter out these duplicates in the results reported
in Fig. 4, i.e. we do not consider performance on nodes deemed
to be near duplicates of the positives already found. The results
reported by the algorithms are passed through a near duplicate
detector post-processor and are only handed to the user for labeling
if it is not a near duplicate of the results already labeled.

We consider two ads to be near duplicates if they share images,
have a very similar text, and are advertising the same person(s).
In more detail, the inferred advertisement j is compared pairwise
with all of the ads the algorithm has returned thus far excluding
those that were labeled negative, i ∈ L−, and is detected as a near
duplicate if it duplicates any of them: j duplicates i , iff it uses the
exact set of names as i , shares at least one image with i (when they
both contain images), and at least 95% of their bigrams (used in
6refer to Section 5.2.3 for a discussion on computing precision and other quality
measures used.
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Figure 6: Comparison with baselines on the two public datasets of
Table 2. The boxplots correspond to results when weights are reset
between different seeds. The bottom scatter plots compare transfer
(on the left) with reset (on the right). Similar to Fig. 5, points above
the diagonal are the seeds in which the corresponding baseline has
higher accuracy than RedThread; we can see that in these datasets
reseting performs better as the lower triangle is denser in the plots
on the right.

title or body) overlaps. A more sophisticated duplicate matcher or
entity resolution method could be plugged in here, but this is out
of the scope of current paper.

5.2.2 Skipping High Confidence Queries. In the same manner
as above, there are ads which the algorithms reach which are very
similar to the currently positive set, but are not quite duplicates.
Given the limited query budget, it would be better to skip querying
the user with these high confidence matches. Note that we are not
trying to select the queries for the most information gain, and are
still mainly focused on maximizing the number or relevant entities
found given the fixed query budget. This number would be boosted
significantly if we skip querying those we are almost sure would
be positive. Hence we consider a second post-processing procedure
which filters queries to user. Similar to the near-duplicate detector,
this process performs a pairwise comparison with all of the ads
that the algorithm has returned thus far excluding members of L−,
and skips querying a selected ad if it shares more than 90% of its
quad-grams with one of the positive labeled ads. This procedure is
applied to all the baselines and RedThread in similar fashion to the
near duplicator discussed in Section 5.2.1.

Figure 7 shows a significant boost in the number of relevant
entities found by different algorithm if we skip querying user with
high-confidence matches7. For example, for most seeds in the DMV
dataset, we are finding more relevant entities than the query budget
as the median is well above 40. These results are on the same
experimental setting as the Fig. 4 and are over the same set of 100
seeds. Again, a more sophisticated procedure could be trained to
select the high confidence matches for RedThread, particularly by
observing the raw scores the algorithm produces. The development
of such matcher is in the future work, here however the current
external procedure is preferred since we can apply it to the baselines
in the same manner as to RedThread to have a fair comparison.
7Note that none of the methods use labels from the high confidence matches, and
labels are only used to evaluate the performance, i.e. the number of positive founds
for both high confidence matched and queried instances.
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Figure 7: Comparison with baselines on three human trafficking
datasets of Table 1 when skipping high confidence matches. We see
the maximums are much higher compared to Fig. 4, using the same
query budget of 40.

5.2.3 Precision and Recall. When the query budget is fixed and
we are not skipping the high confidence matches, i.e. in Fig. 4, to
Fig. 6, precision is a scaled version of the number of relevant entities,
i.e. divided by the total queried instances (40). However, when
skipping the high confidence matches, it is important to look at the
precision of the method since the total number of true positives
and false positives are no longer constrained to be a constant. Table
3 reports the precision, recall and F0.5 scores computed for the
different algorithms. These results are averaged over the same
set of 100 seed nodes. The top set of basic results correspond to
the results of Fig. 4, whereas the bottom set show the change in
precision and recall when skipping high confidence matches, i.e.
Fig. 7. In Table 3 we see a significant boost in the recall and f-measure
while the change in precision is negligible. Given this, skipping
these high confidence matches seems to be the best strategy.

5.3 Constructing Graphs from Inferred Links
For a given set of positive labeled set, we can track and plot in
which order and with what score the advertisements were inferred,
to derive a graph of how advertisements are connected. Based on
this, we can construct i) a heterogeneous graph with evidence and
advertisement nodes, where length two paths show the ads that are
connected and how; and ii) a multi-edge graph in which advertise-
ment nodes are connected by edges of different type (evidence); or
iii) a simple graph where advertisements are connected by aggre-
gate edges of all the pieces of evidence they share. Figure 2 shows
the case in the first form, for the relevant entities discovered for a
seed that produced one of the largest clusters in the SUS dataset.
From investigating the content of these connected ads, we observe



Method DMV DJF SUS
Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

basic

RW 0.17 ± 0.12 0.04 ± 0.04 0.09 ± 0.07 0.23 ± 0.14 0.01 ± 0.01 0.05 ± 0.03 0.15 ± 0.12 0.03 ± 0.03 0.08 ± 0.07
wRW 0.17 ± 0.11 0.04 ± 0.04 0.09 ± 0.07 0.24 ± 0.13 0.01 ± 0.01 0.05 ± 0.03 0.15 ± 0.11 0.03 ± 0.03 0.08 ± 0.07
NF 0.04 ± 0.09 0.01 ± 0.02 0.02 ± 0.05 0.05 ± 0.09 0.00 ± 0.01 0.01 ± 0.02 0.06 ± 0.09 0.01 ± 0.02 0.04 ± 0.06
NP 0.21 ± 0.20 0.05 ± 0.06 0.11 ± 0.12 0.21 ± 0.23 0.01 ± 0.01 0.04 ± 0.05 0.25 ± 0.21 0.06 ± 0.06 0.14 ± 0.13
NM 0.55 ± 0.20 0.13 ± 0.09 0.30 ± 0.15 0.58 ± 0.18 0.03 ± 0.02 0.12 ± 0.06 0.45 ± 0.25 0.10 ± 0.07 0.25 ± 0.16
NE 0.73 ± 0.33 0.17 ± 0.13 0.40 ± 0.23 0.70 ± 0.33 0.04 ± 0.02 0.14 ± 0.09 0.47 ± 0.34 0.10 ± 0.09 0.27 ± 0.20
RedThread 0.77 ± 0.32 0.18 ± 0.13 0.43 ± 0.22 0.75 ± 0.31 0.04 ± 0.02 0.15 ± 0.09 0.55 ± 0.30 0.12 ± 0.08 0.30 ± 0.18

high confidence

RW 0.16 ± 0.10 0.04 ± 0.04 0.09 ± 0.07 0.24 ± 0.14 0.01 ± 0.01 0.05 ± 0.04 0.14 ± 0.11 0.03 ± 0.03 0.08 ± 0.07
wRW 0.18 ± 0.11 0.05 ± 0.06 0.11 ± 0.08 0.24 ± 0.13 0.01 ± 0.01 0.05 ± 0.04 0.16 ± 0.12 0.04 ± 0.04 0.09 ± 0.08
NF 0.04 ± 0.07 0.01 ± 0.02 0.02 ± 0.04 0.05 ± 0.08 0.00 ± 0.01 0.01 ± 0.02 0.06 ± 0.08 0.01 ± 0.02 0.03 ± 0.05
NP 0.21 ± 0.19 0.07 ± 0.10 0.13 ± 0.14 0.20 ± 0.20 0.01 ± 0.02 0.05 ± 0.07 0.24 ± 0.18 0.07 ± 0.08 0.15 ± 0.14
NM 0.53 ± 0.19 0.25 ± 0.20 0.39 ± 0.19 0.56 ± 0.16 0.05 ± 0.04 0.18 ± 0.10 0.43 ± 0.24 0.17 ± 0.16 0.31 ± 0.21
NE 0.56 ± 0.29 0.35 ± 0.31 0.46 ± 0.29 0.62 ± 0.30 0.12 ± 0.15 0.28 ± 0.24 0.46 ± 0.30 0.20 ± 0.21 0.34 ± 0.25
RedThread 0.63 ± 0.26 0.41 ± 0.31 0.52 ± 0.27 0.76 ± 0.24 0.16 ± 0.19 0.37 ± 0.24 0.52 ± 0.26 0.22 ± 0.18 0.38 ± 0.23

Table 3: Performance of RedThread compared with baselines on three human trafficking datasets of Table 1. Average and standard deviation
of precision, recall, and f-measure are reported over the 100 seeds.

that they are advertising two different persons (i.e. two different
nicknames used with different heights) but are using many shared
phrases (mostly bigrams in the body of the text which correspond).
These correspond to ads related to two different possible victims),
which are part of a bigger organized activity pattern. Note that
these ads also share a hard identifier (phone number) which are
treated as labels here and are not used as evidence when inferring
the connections.

6 CONCLUSION AND FUTUREWORK
In this paper, we defined Active Search of Connections based on its
use-case for spotting organized activities in escort advertisements.
Active Search of Connections finds related and relevant data-
points to a given lead through their shared evidence. We presented
RedThread as an efficient solution which searches locally by ex-
panding from the lead and learns interactively by querying labels.
RedThread considers a heterogeneous structure to account for
different evidence types. We experimentally compared RedThread
performance with different baselines on five different datasets, two
of which are publicly available.8 The code for RedThread is released
publicly.

There are multiple lines of future work which we enumerate
throughout the paper. This includes improving the post-processing
procedures to further enhance recall of RedThread and baselines,
and interactive visualization to present the results of RedThread
in an accessible form to facilitate the collection of feedback from
domain expert investigators. From a research perspective, we also
envision the following future objectives: i) flagging suspicious seeds
automatically, to generate leads for RedThread, using unsupervised
pattern and anomaly detectionmethods. ii) incorporating additional
databases as evidence modalities, e.g. bitcoin wallets, social media
information, etc; iii) incorporating features on specific nodes in the
inference, e.g. indicators on advertisement’s textual component:
third person style, authorship, etc; and iv) using graph databases to
allow fast online storage and analysis of the data.

8Releasing collections of human trafficking data requires careful and through
anonymization to prevent (re-)victimization of subjects, even if such data has been
first published openly online. We are investigating privacy and technical concerns
involved in that as a separate research project which might lead to a future release of
such data.
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