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ABSTRACT
Dynamic and temporal graphs are rich data structures that are
used to model complex relationships between entities over time.
In particular, anomaly detection in temporal graphs is crucial for
many real world applications such as intrusion identification in
network systems, detection of ecosystem disturbances and detec-
tion of epidemic outbreaks. In this paper, we focus on change point
detection in dynamic graphs and address two main challenges as-
sociated with this problem: I) how to compare graph snapshots
across time, II) how to capture temporal dependencies. To solve the
above challenges, we propose Laplacian Anomaly Detection (LAD)
which uses the spectrum of the Laplacian matrix of the graph struc-
ture at each snapshot to obtain low dimensional embeddings. LAD
explicitly models short term and long term dependencies by apply-
ing two sliding windows. In synthetic experiments, LAD outper-
forms the state-of-the-art method. We also evaluate our method
on three real dynamic networks: UCI message network, US senate
co-sponsorship network and Canadian bill voting network. In all
three datasets, we demonstrate that our method can more effec-
tively identify anomalous time points according to significant real
world events.
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Figure 1: LAD detects changes in Canadian Member of Par-
liament voting patterns. LAD identified 2013 as anomalous
due to abnormal amount of edges between political parties.

1 INTRODUCTION AND MOTIVATION
Real world problems in various domains (e.g. political science, biol-
ogy, chemistry and sociology) can be modeled as evolving networks
that capture temporal relations between nodes. With the increasing
availability of dynamic network data in areas such as social media,
public health and transportation, providing sophisticated methods
that can identify anomalies over time is an important research di-
rection. The goal of anomaly detection in dynamic graphs is to
identify different types of time-varying anomalies that significantly
deviate from the "normal" or "expected" behavior of the underlying
graph distribution. We provide some motivating examples below.

In a transportation network, traffic volumes can be represented
as edge weights in isolated network snapshots that are taken at
various times of the day. When a traffic accident occurs, a drastic
change in that section of the network will likely follow (e.g. decreas-
ing amount of traffic). On the other hand, cyberbullying, terrorist
attack planning and fraud information dissemination [46] can all be
seen as cases of anomalies in a temporal social graph. Identifying
these anomalies accurately and rapidly can result in positive and
significant real world impact. Lastly, complex clinical information
can also be represented as a dynamic graph. Patients, symptoms
and treatments can be represented as vertices in a heterogenous
network. Detecting anomalies in such network can discover critical
scenarios where errors or abnormal patient conditions arise [9].

In this work, we focus on change point detection which identifies
time steps where the graph structure or components deviate signif-
icantly from the normal behavior. As change point detection and
event detection are closely related, we first explain the distinctions
between them. Following [44]’s definition, a change point is a time
point where there is a sudden change in the underlying network
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Method event change point scalable evolving # nodes node permutation invariant
LAD (ours) " " " " "

Activity vector [24] " " "

TENSORSPLAT [27] " " "

EdgeMonitoring [44] " "

Table 1: LAD satisfies all the desired properties while alternative methods lack one more.

generative process and this new process continues beyond the cur-
rent point. In contrast, an event is defined as a time point where
the network deviates significantly from the expected behavior and
falls back to normal after this point. Once the particular anomalous
graph instance is found, potential causes can be then identified
through various static graph analysis techniques. Figure 1 shows
the anomalous snapshot (inside the red box) detected by our method
in the Canadian parliament voting network. Nodes are colored by
political parties and node sizes are weighted using PageRank [33].
Our method detected anomalous cross party interaction in 2013.

There are two major challenges for change point detection:
1). How to compare graph snapshots across time. To compare graph
level changes over time, a summary of the network in the form of
a low dimensional representation is often used [46]. We propose to
use the singular values of the Laplacian matrix (Laplacian spectrum)
because it represents a global view of the graph snapshot and of
its connection to graph connectivity and low rank approximation.
Due to these connections, we show that LAD can detect a wide
range of graph changes (i.e. community structure and average edge
weight) in dynamic graphs in Section 5.
2). How to capture temporal dependencies. In practice, graphs can
undergo abrupt changes at any given time step [16]. These sudden
changes can be identified through a short term sliding window [2,
24]. However, points in time that signal a change in graph pattern
for a long duration of time can also have high significance [37]. In
particular, it is possible for the underlying graph generation model
to evolve [36, 44]. Effective detection of these points of change
would require the model to reason with the graph behaviors beyond
the most recent ones. We propose to use two context windows
which explicitly compare the current graph structure with the
typical behaviors from both short term and long term perspectives.
Summary of contributions:

• We introduce a novel change point detection method : Lapla-
cian Anomaly Detection (LAD). LAD computes the Singular
Value Decomposition (SVD) of the graph Laplacian to obtain
a low dimension graph representation. To the best of our
knowledge, this is the first time that Laplacian spectrum has
been used for change point detection.

• LAD explicitly captures both the short term and the long
term temporal relations to model the abrupt and gradual
changes in dynamic networks.

• We extensively evaluate LAD on two synthetic experiments
and three real world datasets. We show that LAD is more
effective at identifying significant events than state-of-the-
art methods. We also interpret the predicted anomaly scores
by looking at its correlation with different graph properties.

Reproducibility: code and data is publicly available 1.

1https://github.com/shenyangHuang/LAD

2 RELATEDWORK
In 2015, Ranshous et al. [37] classified methods for anomaly de-
tection in dynamic graphs into five categories: community based,
compression based, decomposition based, distance based and proba-
bilistic model based methods. The common strategy across all these
methods are to extract a low dimensional representation from graph
snapshots and then apply an anomaly scoring function to compare
these representations. Most methods model temporal patterns by ei-
ther using a decay function to put more emphasis on recent graphs
or a manually defined sliding window (see e.g., [29, 32, 41]). In this
section, we discuss related literatures from event detection and
change point detection. In addition, we summarize features of LAD
and other alternative methods in Table 1. Note that LAD is the only
approach that satisfies all the desired properties.

2.1 Event Detection
An early work by IdÃľ and Kashima [24] aimed to find time points
where the majority of the edge attributes in the network show
significant deviation from the recent ones. The principal eigenvector
corresponding to the maximum eigenvalue of the positive weighted
adjacency matrixW was used as a low dimensional representation
of the graph (called activity vector). The typical graph behavior
within a short term context window is summarized as the principle
left singular vector (of the matrix formed by activity vectors in
this window). The deviation of the current activity vector from the
typical behavior was used as the anomaly score. Different from
IdÃľ and Kashima, we use the Laplacian spectrum to summarize
graph structures and explicitly constructs two sliding windows for
long term and short term context.

Despite having a similar workflow to [24], Akoglu and Falout-
sos [2] focused on node embedding and change points where many
nodes deviate from their normal ’behavior’. This is achieved by
extracting the time sequence of selected network features for all
nodes. Then, a correlation matrix representing pairwise node in-
teractions are used the graph summary instead. Taking inspiration
from Akoglu and Faloutsos, we instead suggest to incorporate out-
liers from the univariate temporal sequences of different network
properties to understand the correlation between such properties
and explaining the anomalies detected by LAD in a more inter-
pretable way.

Koutra et al. [27] first formulated dynamic graphs as high order
tensors and proposed to use the PARAFAC decomposition [7, 22] to
obtain vector representations for anomaly scoring. The proposed
TENSORSPLAT method is included as one of the alternative meth-
ods in Section 5. For more information on tensor decompositions,
we refer the readers to [25]. Shah et al. [39] proposed an effective
algorithm TimeCrunch for dynamic graph summarization using
Minimum Description Length (MDL), where temporal structures

https://github.com/shenyangHuang/LAD


are transmitted through adjacency tensors to the model. The idea
behind this algorithm is to find the smallest model that will cut
down the encoding length for one-shot, ranged, periodic and flick-
ering structures in the dynamic graph.

2.2 Change Point Detection
Koutra et al. [28] formally stated the axioms and desired properties
of functions that measure the connectivity difference between two
graphs (graph similarity functions). DeltaCon computes pairwise
node affinities in the first graph and then measures the difference
in node affinity score of the two graphs. However, DeltaCon is only
well-defined for pairs of graphs thus lacking the ability to reason
with a sequence of graph snapshots. This inherently limits its ability
to detect gradual changes which involve multiple snapshots.

Peel and Clauset [36] first formalized the change point detection
problem as identifying the times at which the large-scale patterns
of interaction change fundamentally. Their proposed LetoChange
method relies on an appropriate choice of a parametric family of
probability distribution which describes the data. Then, a Bayesian
hypothesis test is used to accept or reject if a parameter change has
occurred in the model.

Recently, Wang et al. [44] model network evolution as a first
order Markov process thus deriving their EdgeMonitoring method
based on MCMC sampling theory. Their assumption is that there
is some unknown underlying model that governs the generative
process. Moreover, each graph snapshot is dependent on the current
generative model as well as the previously observed snapshot. This
method is often regarded as the current state-of-the-art for change
point detection. However, EdgeMonitoring relies on consistent
node orderings across all time steps. In addition, EdgeMonitoring
assumes constant number of nodes for each snapshot. This assump-
tion is easily violated in large social networks where users accounts
are added frequently. In contrast, LAD can manage varying number
of nodes across time.

Eswaran et al. [14] proposed SPOTLIGHT to detect anomalous
graph snapshots involving the sudden appearance or disappear-
ance of large dense subgraphs. The core idea is to compose a K-
dimensional sketch containing K subgraphs to detect changes in
the dynamic graph.While SPOTLIGHT focuses on dense subgraphs,
LAD detect more variety of change points such as changes in the
community structure.

3 PROBLEM DEFINITION
3.1 Dynamic Graph
Let the interval of interest be from timestamp 1 toT . A correspond-
ing set of graph snapshots G is written as {Gt }Tt=1, where each
Gt = (Vt , Et ) represents the static graph at timestamp t. Vt and
Et are the set of nodes and edges respectively. Define an edge
e = (i, j,w) ∈ Et as the connection between node i and node j at
timestamp t in the dynamic graph with weightw . Note that as each
edge e is defined for a particular timestamp t , edges can disappear
or reappear in the dynamic graph across different timestamps. By
convention,w = 1 for all edges in unweighted graphs andw ∈ R+
for weighted graphs. We use an adjacency matrix At ∈ Rn×n to
represent edges in Et where n = |Vt |. Similar to [24, 27, 47, 50],
the number of nodes in the graph is assumed to be constant across

Figure 2: LAD considers short and long term temporal rela-
tions encoded in the graph Laplacian spectrum.

all timestamps (thus maintaining the shape of the adjacency matrix
At ). However, our method is also applicable to real world networks
where the number of active nodes fluctuates from one snapshot to
another.

3.2 Change Point Detection
Based on the above formulation, the goal is to find anomalous
graphs Gt in G. Given an anomaly scoring function f : Gt →
R, find time steps t such that | f (Gt ) − f (GN )| > δ or | f (Gt ) −
f (GW )| > ϵ where GN is the normal behavior of the graph in the
global context, GW is the short term behavior of the graph in recent
context windowW and δ , ϵ are thresholds. In general, the anomaly
scoring function should clearly differentiate anomalous points from
normal ones and assign higher anomaly scores to more anomalous
points.

4 LAPLACIAN ANOMALY DETECTION
We propose a new spectral anomaly detection method for dynamic
graphs: Laplacian Anomaly Detection (LAD). The core idea of LAD
is to detect high level graph changes from low dimensional embed-
dings (called signature vectors). The "typical" or "normal" behavior
of the graph can be extracted from a stream of signature vectors
based on both short term and long term dependencies. In this way,
we can compare the deviation of current signature vector from the
normal behavior. Figure 2 shows the flowchart of our method.

4.1 Laplacian Spectrum
We define the (unnormalized) Laplacian matrix Lt as Lt = Dt −At
where Dt is the diagonal degree matrix and At is the adjacency
matrix of Gt . In this work, we choose the singular values obtained
through Singular Value Decomposition (SVD) [19] of the Laplacian
matrix as graph embeddings for each snapshot. Figure 3 shows
the visualization of the Laplacian spectrum and the corresponding
anomaly scores detected by LAD for the Senate co-sponsorship
network. This choice is motivated by the following.
Singular values:

• are related to the Laplacian spectrum,
• encodes the compression loss of low rank approximations
of the Laplacian matrix,

• are node permutation invariant,
• can be efficiently computed in real world sparse matrices

First, it is known that the singular values of a positive symmet-
ric matrix coincides with its eigenvalues. The Laplacian matrix is
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Figure 3: LAD captures changes in the graph spectrum.
LAD scores (top) and the top 6 singular values (bottom) are
aligned and show correspondence at each time step. This il-
lustration is from the Senate co-sponsorship network. The
warmer the color, the higher the intensity.

symmetric and positive semi-definite for an undirected weighted
graph [43]. The eigenvalues of the Laplacian matrix capture fun-
damental structural properties of the corresponding graph. This
property has been extensively leveraged in many fields such as
randomized algorithms, combinatorial optimization problems and
machine learning [49], and the field of spectral graph theory [10] is
dedicated to the study of graph Laplacian matrices. As an illustra-
tion, the multiplicity k of the eigenvalue 0 of L equals the number of
connected components in the graph [43]. In addition, the Laplacian
spectrum is related to many other structural properties of the graph
such as the degree sequence, number of connected components,
diameter, vertex connectivity and more [49].

Second, it is well known that the truncated SVD gives the best low
rank approximation of a matrix with respect to both the Frobenius
norm and the 2-norm (see Eckart-Young theorem). More precisely,
the (k + 1)th singular value σk+1 of a matrix corresponds to the
reconstruction error of the best rank k approximation measured
in the 2-norm. From this insight, we know that the (ordered) sin-
gular spectrum σ1,σ2, ...,σr encodes rich information regarding
the reconstruction loss that would occur for different levels of low
rank approximations. Truncated SVD is often used as a power-
ful compression tool for images [38], videos [3] and audios [48].
Thus, capturing the singular spectrum can be seen an alternative
compression based anomaly detection technique as categorized by
Ranshous et al. [37]. Intuitively, huge fluctuations in the singular
values of the Laplacian matrix reflect drastic changes to the global
graph structure. In an undirected graph where the Laplacian sin-
gular values coincides with the eigenvalues, the decrease in the
number of zero singular values would reflect the decrease in the
number of connected components.

Third, change point detection can be viewed as a binary graph
classification problem. Being node permutation invariant is one
of the most desirable properties for a graph learning method [45].
However, preserving the same node ordering for each graph snap-
shot might not be feasible in many practical settings. Since applying

row or column permutations on the Laplacian matrix has no ef-
fect on the singular values, LAD is node permutation invariant. In
this way, LAD can be applied to a broader range of scenarios than
methods relying on a consistent node ordering such as EdgeMoni-
toring [44].

Lastly, singular values can be efficiently obtained through sparse
computations [1]. As many real world graphs are sparse, the pro-
posed graph embedding can be scaled to large datasets. In addition,
depending on computational budget, one can compute the top k sin-
gular values through truncated SVD with much less computational
cost when compared to the full SVD. In Section 5, we show that for
some real world datasets, it is often enough to compute the top k
singular values. We also explain the computational complexity of
LAD in Section 4.5.

4.2 Characterizing Normal Behavior
Identifying a normal or typical behavior from a temporal window
is often an integral part of change detection. Similar to [2, 24], we
compute a "typical" or "normal" behavior vector from the previ-
ous l singular spectrums where l is the sliding window size. First,
we perform L2 normalization on the Laplacian spectrums seen so
far ®σ0, . . . , ®σt to obtain unit vectors. Next, a context matrix C is
constructed:

C = ©«
| | |

®σt−l−1 ®σt−l−2 . . . ®σt−1
| | |

ª®¬ ∈ Rn×l (1)

where n is length of the signature vector. We compute the left
singular vector of C with SVD to obtain the normal behavior vector
σ̃t . In literature, this is often considered as a weighted average
vector from the sliding window [2].

4.3 Two Perspectives
Different from [2, 24], we propose to compare the current signature
vector with the typical behavior from two independent sliding
windows: a short term window and a long term window. The short
term window encodes information from the most recent trend and
captures abrupt changes in the overall graph structure. Depending
on the application, the length of the short term window can be
adjusted to best reflect an appropriate time scale. On the other
hand, a long term window is designed to capture larger scale and
more gradual trends in the dynamic graph. For example, for the UCI
Message dataset, the short term context can be monitoring weekly
change and the long term context can be monitoring a biweekly
change.

4.4 Anomalous Score Computation
After capturing the normal behavior, one can then define a scoring
function to measure the difference between the current signature
vector and the expected or normal one. In this work, we use the
same anomaly score as introduced in [2, 24], namely theZ score. Let
σ̃t be the normal behavior vector and ®σt be the Laplacian spectrum
at current step. As mentioned in Section 4.2, both σ̃t and ®σt are
normalized to unit vectors, then the Z score is computed as:

Z = 1 −
®σ⊤
t σ̃t

∥®σt ∥2∥σ̃t ∥2
= 1 − ®σ⊤

t σ̃t = 1 − cosθ , (2)



where cosθ is the cosine similarity between ®u and ®v . Essentially
the Z scores becomes closer to 1 when the current spectrum is very
dissimilar to the norm thus signaling an anomalous point.

Let s and l be the sizes of the short term and long term sliding
windows. Analogous to Section 4.2, one can obtain two different
normal behavior vectors σ̃s and σ̃l . σ̃s encodes the expected norm
within a few time steps while σ̃l captures the normal network
activity within a larger time span. One can then compute the short
term and long term anomaly scores Zs and Zl based on cosine
similarity. To best aggregate these two perspectives, we take Zt =
max(Zs ,Zl ) to decide if the current graph is more anomalous in
abrupt or gradual changes.

Now having a sequence of anomaly scores Z1, . . . ,Zt , how to
best select the change points based on these scores? Different
than [2, 24], we choose the points that have the largest increase in
anomaly score when compared to the previous time step. Therefore,
we have the final anomaly score Z ∗

t =min(Zt −Zt−1, 0). The points
with the largest Z ∗ are then selected as anomalies.

4.5 Computational Complexity
Given a matrix A ∈ Rm×n , the computational complexity for full
SVD is O(m2n) whenm ≤ n. For a truncated rank k SVD, the com-
plexity is O(mnk). Halko et al. [21] showed that randomization
offers a powerful tool for performing low-rank matrix approxi-
mation. Randomized SVD more efficiently utilizes computational
architectures thus achieving O(mn log(k)) cost. At the same time,
Berry [4] presented strong numerical methods for computing SVD
in large sparse matrices on a multiprocessor architecture. As many
real world networks are sparse, sparse SVD can achieve significant
computational savings. In this work, we use the Scipy [42] sparse
SVD implementation in python.

5 EXPERIMENTS
In this section, we perform extensive experiments on different types
of synthetic and real world datasets to validate the effectiveness of
the LAD framework.

5.1 Measuring Performance
For quantitative evaluation of a change point detection method,
we use Hits at n (H@n) metric which reports the number of identi-
fied significant anomalies out of the top n most anomalous points.
In synthetic experiments, we use the ground truth labels in the
generation process for evaluation. In real world datasets, we treat
the well-known anomalous times steps as ground truth anomalies
which should be detected by a given method.

5.2 Contenders and Baselines
We compare LAD with the following alternative methods. The
same short term and long term window sizes (s and l) are used
if applicable. The short term and long term anomaly scores are
both shown in Figure 4,5,6,7,8. Note that for all experiments, the
startup period (0, . . . , l) is set to have anomaly score of 0 because
we assume these points are not change points.

• Activity vector. We refer to the method proposed by IdÃľ et
al. [24] as "activity vector" based methods. IdÃľ et al. used the

Order Time Point Generative SBM Model
0 0 Nc = 4, pin = 0.25, pex = 0.05
1 16 Nc = 10, pin = 0.25, pex = 0.05
2 31 Nc = 2, pin = 0.5, pex = 0.05
3 61 Nc = 4, pin = 0.25, pex = 0.05
4 76 Nc = 10, pin = 0.25, pex = 0.05
5 91 Nc = 2, pin = 0.5, pex = 0.05
6 106 Nc = 4, pin = 0.25, pex = 0.05
7 136 Nc = 10, pin = 0.25, pex = 0.05

Table 2: Model changes in experiment 5.4.1 when only num-
ber of blocks (Nc ) changes (Pure setting).

principal eigenvector of the adjacency matrix (namely the activ-
ity vector) instead of our proposed Laplacian spectrum. Accord-
ing to the original work, only a short term context window is
considered.

• TENSORSPLAT. Koutra et al. [27] proposed to view the tempo-
ral graph as a tensor and then perform PARAFAC decomposition
to obtain low dimensional factors that groups similar entities or
timestamps together (we use CP rank of 30 for all experiments).
The original paper proposed to use clustering on the factors
for change detection. However, the clustering algorithm is not
specified. We use the well-known Local Outlier Factor (LOF) [6]
approach along with the TENSORSPLAT framework.

• EdgeMonitoring. Wang et al. [44] proposed the EdgeMoni-
toring approach and used joint edge probabilities as the "fea-
ture vector" while modelling network evolution as a first order
Markov process.

5.3 Interpreting Results
It is often difficult to interpret the anomaly score of a given change
point detection method as the task inherently demands direct com-
parison between global graph structures over time. As network
characteristics vary drastically across domains [8], it is important
to design metrics that help us understand the correlation between
anomaly scores and well-known graph properties. In this work,we
identify temporal outliers in specific graph properties and compare
them to the ones predicted by LAD. We choose the outlier score y
as follows:

y =
|αt − αavд |

αstd
, (3)

where αavд , αstd are the average and standard deviation of α com-
puted from a moving window. We select the moving window size
to correspond with the short term window size s . Then we compute
the Spearman rank correlation [51] to understand the statistical
dependence between two ranked variables. We observe that LAD
is not relying on one particular graph statistics but rather on the
most important aspects of the dynamic graph of interest.

5.4 Synthetic Experiments
To demonstrate the performance of LAD, we design three controlled
experiments. For these synthetic experiments, we use data gener-
ated from the Stochastic Block Model (SBM) [23]. The number of
communities k as well as the number of nodes within each com-
munity can be specified through a size vector ®s ∈ Rk . In addition,
the inter-community and intra-community connectivity for each
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Figure 4: LAD perfectly recovers the injected change points
of Table 2. We visualize the predicted anomaly scores. Both
the raw Z score (top) and the difference in consecutive Z
scores, the Z ∗ scores (bottom) are plotted.

block can be directly encoded in a symmetric probability matrix
P ∈ Rk×k . For all experiments, we set the short term and the long
term window to be 5 and 10 time steps respectively and use the
entire Laplacian spectrum in LAD.

5.4.1 Pure Setting. Here, we only introduce change points, where
the adjustments in community structure persists until the next
change point is reached. We generate a temporal network with
151 time points where each snapshot is produced through SBM
parametrized by ®s and P . There are always 500 nodes per snapshot
and the community change is described in Table 2. Here Nc repre-
sents the number of equal sized communities in the snapshot, and
pin ,pex denotes the internal and external community connectivity
probability respectively. We set the continuity rate [44] to be 0 for
change points and 1.0 elsewhere for the pure setting.

The anomaly score predicted by LAD can be seen in Figure 4.
The top 7 most anomalous points correspond to the 7 ground truth
points in Table 2 while the other points have extremely low anom-
aly scores. This supports the empirical observation that the Lapla-
cian spectrum is indeed sensitive to changes in community struc-
ture. EdgeMonitoring and LAD both achieves perfect precision as
both can reason with gradual changes over time. In contrast, both
TENSORSPLAT and Activity vector can only recover some change
points. As Activity vector uses the principal eigenvector of the
adjacency matrix, it is unable to detect community changes as well
as the Laplacian spectrum used in LAD.

By examining Spearman rank correlations in Table 3, we observe
that LAD predictions are most strongly correlated with the number
of connected components while still having a positive correlations
with other network properties such as transitivity. As LAD captures
high level graph structures, it is sensitive to the important properties
in the dynamic graph of interest while not dependent on any single
property.

Graph Property Spearman Rank Correlation
# of connected components 17.0%
Transitivity 11.8%
# of edges 7.5%
Average degree per node 15.9%

Table 3: LAD scores correlate well with the number of con-
nected components when injected points are changing num-
ber of blocks in SBM (Table 2). Spearman rank correlation
between LAD and other graph properties is also reported.

Time Point Type Generative SBM Model
0 start point Nc = 4, pin = 0.25, pex = 0.05
16 event Nc = 4, pin = 0.25, pex = 0.15
31 change point Nc = 10, pin = 0.25, pex = 0.05
61 event Nc = 10, pin = 0.25, pex = 0.15
76 change point Nc = 2, pin = 0.5, pex = 0.05
91 event Nc = 2, pin = 0.5, pex = 0.15
106 change point Nc = 4, pin = 0.25, pex = 0.05
136 event Nc = 4, pin = 0.25, pex = 0.15

Table 4: Model changes in experiment 5.4.2 where we have
combination of event and change points (Hyprid setting).
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Figure 5: LAD perfectly recovers all events and change
points defined in Table 4.

Note that when using the rawZ scores in Figure 4, we observe de-
clines in anomaly score after the change point. In a sliding window
which contains graph snapshots from the previous graph gener-
ative process and the current one, the normal behavior vector is
computed based on a mix of graphs from two generative processes
thus leading to the observed declining anomalous scores after the
change point. In comparison, using Z ∗ scores makes LAD more
robust under different choices of sliding windows. The negative Z ∗

scores are only shown for illustrative purpose In Figure 4, in other
figures, they are set to 0.

5.4.2 Hybrid Setting. To study the effectiveness of LAD in both
change point and event detection, we generate a synthetic experi-
ment with SBM where these two types of changes both exist. We
generate events by strengthening the inter-community connectiv-
ity for that time point (subsequent points are not affected). These
events can correspond to sudden increased collaborations between
usually separated communities such as political parties. The details
regarding the generative process can be seen in Table 4. We set the
continuity rate [44] to be 0 for change points and 0.9 elsewhere for
the hybrid setting. From Figure 5, we observe that LAD is able to
perfectly recover all events and change points.



Metric Hits @ 7 Hits @ 10 Hits @ 2
Dataset Pure Hybrid Resampled UCI Senate

LAD (ours) 100% 100% 100% 50% 100%
EdgeMonitoring [44] 100% 100% 0% 0% 100%
Activity vector [24] 71.4% 0% 0% 50% 50%
TENSORSPLAT [27] 28.5% 14.2% 57.1% 0% 50%

Table 5: LAD consistently finds significant anomalies across
different datasets and outperforms alternative approaches.
The hybrid experiment refers to the event and change point
detection experiment.

5.4.3 Resampled Setting. In this setting, we use a constant con-
tinuity rate of 0 for all time steps, i.e. the graph is resampled from
the generative process at each step. In real world graphs, majority
of the edges might not persist over consecutive time steps but rather
determined by the underlying community structure such as a club
or class. For the generation parameters and change points’ details,
we use an identical setup as the Hybrid Setting. The complete re-
sampling from the SBM model can be considered as a node level
permutation within each community. As discussed in Section 4, the
eigenvalues of the Laplacian is node permutation invariant. Indeed,
LAD outperforms all baselines. In comparison, EdgeMonitoring
selects specific pairs of node pairs to track over time thus it is
susceptible to node permutation and resulted in poor performance.

5.5 Real-world Experiments
Here, we evaluate the performance of LAD on two real-world bench-
mark datasets, as well as an original dataset. we report the perfor-
mance of LAD and all baselines in Table 5. For UCI Message and
Senate co-sponsorship experiments, LAD is able to achieve strong
performance using only the top 6 eigenvalues. For Canadian bill
voting network, we report the LAD performance with the top 338
eigenvalues 2.

5.5.1 UCI Message. The UCI Message dataset is a directed and
weighted network based on an online community of students at the
University of California, Irvine. Each node represents a user and
each edge encodes a message interaction from one user to another.
The weight of each edge represents the number of characters sent
in the message. When an user account is created, a self edge with
unit weight is added. A total of 1,899 users was recorded. The
network data covers the period from April to October 2004 and
spans 196 days. In this work, we treat each day as an individual
time point. There are 59,835 total messages sent across all time
stamps and 20,296 unique messages. To ensure privacy protection,
all individual identifiers such as usernames, email and IP addresses
were removed thus we use the dataset description provided in [34]
to find significant events in the dataset. We select the short term
window to be 7 days as suggested by Panzarasa et al. The long term
window is then selected to be 14 days or two weeks.

Figure 6 shows the Z ∗ scores predicted from both the short term
and long term window (with top 6 eigenvalues). Panzarasa et al.
mentioned that day 653 is the end of spring term and day 158 is the
start of the fall term. Day 65 is correctly predicted by LAD and ac-
tivity vector while the top 10 predictions from EdgeMonitoring and
TENSORSPLAT do not include either days. However, LAD predicts

2338 is the number of seats in the House of Commons of Canada
3we set the index to start at 0
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Figure 6: LAD correctly detects the end of the university
spring term and one day before the start of the fall term in
the UCI message dataset.
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Figure 7: LAD correctly detects the 100th and 104th congress
as the top 2 most anomalous points.

day 157 as anomalous which corresponds to the day prior to the
start of the fall term. It is likely that anomalous message behaviors
are exhibited before school starts. As the edge weight (number
of characters in messages) shows important connections between
users in social networks, the Z scores has strongest correlation to
the average edge weight per snapshot in this dataset.

5.5.2 Senate co-sponsorship Network. Senate co-sponsorship
network [15] examines social connections between legislators from
their co-sponsorship relations on bills during the 93rd-108th Con-
gress. An edge is formed between two congresspersons if they are
cosponsors on a bill. Bills are grouped into temporal snapshots
biannually (time frame for each graph) and co-sponsors on a bill
form a clique. Similar to [44], we start from the 97th Congress as
full amendments data is available from there onward. Fowler [15]
pointed out that the 104th Congress corresponds to "a Republican
Revolution" which "caused a dramatic change in the partisan and
seniority compositions." Wang et al. also stated that the 104th Con-
gress has the lowest clustering coefficient thus can be seen as a low
point in collaboration while the 100th Congress has the highest
clustering coefficient which signals significant collaboration.

From Figure 7, it is clear that LAD can easily detect the above
change points (using only the top 6 singular values). Variations of
LAD that only utilizes the short term or the long term window are
able to identify both points too. Wang et al. mentioned that Edge-
Monitoring [44] and LetoChange [36] are able to detect both change
points while DeltaCon [28] only predicts the 104th Congress.

The activity vector method requires full SVD which are compu-
tationally expensive and it is only able to detect the 100th Congress.
The anomaly scores output by the activity vector method have
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Figure 8: LAD predicts year 2013 and 2015 as anomalous
years for the Canadian bill voting network.

similar magnitude thus making it difficult to identify change points.
However, if we augment the activity vector method to use LAD
pipeline and aggregates two sliding windows, it is able to correctly
predict both change points. This shows that aggregating the output
from two sliding windows can improve empirical performance with
a different graph embedding technique.

5.5.3 Canadian bill voting network. To understand the tem-
poral change in Canadian Parliament environment, we extracted
open information4 to form the Canadian Parliament bill voting
network. The Canadian Parliament consists of 338 Members of
Parliament (MPs), each representing an electoral district, who are
elected for four years and can be re-elected [11]. In the included
time frame from 2006 to 2019, the increase in the number of elec-
toral seats resulted in parliaments with different amounts of MPs;
since 2015 the House of Commons has grown from 308 seats to
338. Naturally, the number of nodes in the network fluctuates from
year to year. 2 year and 4 years are used as duration for the short
term and long term windows respectively. We consider the MPs
that voted yes for a bill to have a positive relation with the sponsor.
In this way, a directed edge is then formed from a voter MP u to
the sponsor MP v in a given graph snapshot. Each edge is then
weighted by the number of times that u voted positively for v .

LAD detects 2013 and 2015 as two significant change points. Fig-
ure 8 shows the Z ∗ scores predicted by LAD. 2013 is often consid-
ered as the year where cross party cohesion against Conservatives
begins to decline. Prior to 2013, the Liberal and NewDemocratic Par-
ties had more unity in voting patterns. As a new party leader (Justin
Trudeau) is elected in the Liberal party in 2013, changes in voting
patterns are observed [31]. More details regarding data mining are
discussed in Appendix C. In 2015, the house of common increased
the number of constituencies from 308 to 338. Equally, on Octo-
ber 19th 2015 an election took place and the Liberal party won an
additional 148 seats, with a total of 184 seats forming a majority
government led by Justin Trudeau. Prior to 2015, the Liberal party
was divided and however during this election things changed and
literature shows the unified campaign at a local level from different
members of parliament across the country [13].

6 DISCUSSION
Table 5 summarizes the empirical performances of LAD and its
comparison to alternative methods. We observe that LAD has the

4extracted from https://openparliament.ca/

best performance across all datasets. In this section, we discuss
several experimental observations and provide intuitions on the
experimental results.

In the UCI message and senate co-sponsorship experiments, LAD
achieves strong performance using only the top 6 singular values.
It demonstrates that in real world datasets, a low rank truncated
SVD is often sufficient to capture rich graph information. Together
with efficient SVD computation techniques, LAD can be scaled to
large networks. In practice, the rank of the truncated SVD can be
determined by the available computational resources.

By using Spearman rank correlation, we observe that LAD is not
dependent on any one particular graph statistics. Empirically, we
observe that LAD correlates with different graph properties depend-
ing on the network of interest. This coincide with our intuition that
any type of significant change in the graph structure could disrupt
the singular values. These experimental results suggest that LAD
can capture changes of different nature in the graph structure as
it tracks the compression loss of the Laplacian matrix to low rank
approximations.

Lastly, synthetic experiment results suggest that LAD can be
used in a hybrid environment where both change points or events
can occur. Therefore, LAD is suitable to detect anomalous time
points where it is possible for both one time events or fundamental
changes in the network generative process to occur. It is often
difficult to know beforehand what types of anomaly would appear
in a dynamic network, LAD would provide an effective and efficient
solution with no assumptions on the anomaly type.

7 CONCLUSION
We proposed a novel spectral based method capable of both change
point and event detection, called LAD. The core idea of LAD is to
summarize entire graph snapshots into low dimensional embed-
dings through the singular values of the graph Laplacian. Different
than previous approaches, LAD explicitly models the short term
and the long term behavior of the dynamic graph and aggregates
both perspectives. When compared to existing methods, LAD out-
performs all alternative methods on synthetic experiments and
LAD finds well-known events in three real networks.
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A REPRODUCIBILITY
We report the implementations used in our experiments. For TEN-
SORSPLAT, we first compute the PARAFAC decomposition (using
Tensorly [26] library in python) to obtain the temporal factors. Then
the scikit-learn [35] python implementation of the Local Outlier
Factor algorithm. For EdgeMonitoring method, we use the matlab
code kindly provided by the original authors and keep the default
parameters.

B SPECTRAL PROPERTIES AND THEIR
CONNECTIONS

Spectral Properties Connections
L, Lrw , Lsym eigenvalues connected components [43]

L eigenvectors ratio cut [20]
Lrw , Lsym eigenvectors normalized cut [40, 43]

A eigenvalues KATZ centrality [18]
A eigenvectors eigenvector centrality [5]

A dominant eigenvector stationary distrib., PageRank [33]
Table 6: Spectral Properties and Their Connections

The above table summarizes connections between different spec-
tral properties in the graph and their connections in the literature.
We use the same notation as [43]. L, Lrw , Lsym ,A represent the
unnormalized Laplacian matrix, the random walk Laplacian matrix,
the symmetric Laplacian matrix and the adjacency matrix respec-
tively.

C CANADIAN BILL VOTING NETWORK
The Canadian bill voting network was mined from the Open Parlia-
ment API (http://api.openparliament.ca/), a source for digitized data
from the House of Commons in JSON format. We first extracted all
MPs in the canadian parliament from 2006 to 2019. The network
nodes for each snapshot only includes the MPs who actively partic-
ipated in the parliament of that year (around 300 MPs depending
on which year). We then extracted all bills sponsored by each MP
and the corresponding votes for each bill. Lastly, we filtered out
the yes votes for each ballot of the bills and which MPs voted yes.
The data mining code is also available in the code repository of the
project 5.

We also provide more information on the political environment
from 2006 to 2019. During this time period the government party in
power has changed. In 2006, the government was minority Conser-
vative until 2015 when the Liberal party won and formed a majority
parliament [30]. Studies have shown that minority governments
appear to be less productive in legislative activity as consensus is
harder to obtain [12]. Cohesion in the House of Commons within a
political party during voting sessions are often observed and dis-
sent has been seen amongst MPs of the same party who are less
influential [17]. While elected to the House of Commons, MPs can
sponsor more than one bill which can also include bills that may
have not passed in prior parliaments. Parliament sessions follows
no regular pattern from one parliament to another.

5https://github.com/shenyangHuang/LAD

https://github.com/shenyangHuang/LAD
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