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Abstract A measure of distance between two clusterings has important appli-
cations, including clustering validation and ensemble clustering. Generally, such
distance measure provides navigation through the space of possible clusterings.
Mostly used in cluster validation, a normalized clustering distance, a.k.a. agree-
ment measure, compares a given clustering result against the ground-truth cluster-
ing. The two widely-used clustering agreement measures are Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI). In this paper, we present a
generalized clustering distance from which these two measures can be derived.
We then use this generalization to construct new measures specific for compar-
ing (dis)agreement of clusterings in networks, a.k.a. communities. Further, we
discuss the difficulty of extending the current, contingency based, formulations
to overlapping cases, and present an alternative algebraic formulation for these
(dis)agreement measures. Unlike the original measures, the new co-membership
based formulation is easily extendable for different cases, including overlapping
clusters and clusters of inter-related data. These two extensions are, in particular,
important in the context of finding communities in complex networks.

Keywords Clustering Agreement; Cluster Evaluation; Cluster Validation;
Network Clusters; Community Detection; Overlapping Clusters

1 Introduction

A cluster distance, accordance, similarity, or divergence has different applications.
Cluster validation is the most common usage of cluster distance measures. In par-
ticular, in external evaluation, a clustering algorithm is validated on a set of bench-
mark datasets by comparing the similarity of its results against the ground-truth
clusterings. Another notable application is ensemble, or consensus clustering, where
results of different clustering algorithms on the same dataset are aggregated. A no-
tion of distance between alternative clusterings is used in modeling and formulating
this aggregation, i.e. to find a clustering that has the minimum average distance
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to the alternative clusterings1. Another closely related application is multi-view
clustering (Cui et al., 2007), where the objective is to find different clusterings
of the same dataset, which are usually in different sub-spaces of the data, and
could represent different views of that dataset. In the same context, one might be
interested to find the sub-spaces that result in different/similar clusterings.

Clustering distance measures are well-studied and widely-used in cluster val-
idation, where they measure the (dis)agreement between clustering results and
the ground-truth clustering. A normalized measure is used to average agreements
over different benchmark datasets; such as Rand Index (RI), Adjusted Rand In-
dex (ARI), Normalized Mutual Information (NMI), or normalized Variation of
Information (V I). These agreement measures are classified into two families of pair
counting and information theoretic measures, and are often studied separately. In
this paper, we demonstrate that both these families are measuring the agreements
based on the same principle. In more details, these measures are all defined based
on the contingency table of the two given clusterings, i.e. their pair-wise cluster
overlaps; and they measure the average dispersion in this table. More specifically,
we present a generalized clustering distance defined also based on the contingency
table, which has a generative function ϕ. We then show that the representatives
of both these families can be generated from the proposed generalized distance,
using specific ϕ functions. This generalized distance also provides the means for
constructing new clustering agreement measures.

Moreover, unlike the original definitions, this generalized formula does not re-
quire the clusters to be disjoint and nor does it require them to cover all the
data-points; the latter is particularly useful in case there are outliers, or missing
cluster labels. The former, however, does not help extending to overlapping cases.
In fact, there is an inherent difficulty in extending any contingency based formula
for overlapping clusters; since the contingency table can not differentiate between
the natural overlaps in the data and the cluster overlaps used for measuring the
(dis)agreement. To tackle this issue, we propose to measure the agreements be-
tween two given clusterings directly based on the co-memberships of data-points
in their clusters, instead of the overlaps between their clusters. More specifically,
we define the Clustering Co-Membership Difference Matrix (∆), based on which clus-
tering distance could be quantified. In particular, we present two normalized forms
for ∆, denoted by RIδ and ARIδ, which are overlapping counterparts for RI and
ARI, and will reduce to the original measures in case of disjoint clusters.

Last but not least, we point out the fact that all the current clustering agree-
ment measures only consider memberships of data-points in clusters, and overlook
any relations between the data-points or any attributes associated with them.
This is in particular problematic when comparing clusterings in the complex net-

works, since the structure of the data, represented by the relationships between
data-points, is of great importance. Whereas, these agreement measures are be-
ing widely-used in the evaluation and comparison of network clustering methods2.
Here, we discuss the effect of neglecting these relations, i.e. links in the networks,
and derive extensions of our generalized formulae which incorporate the structure
of the data in measuring clustering agreements.

1 Refer to Aggarwal and Reddy (2014), Chapter 23 on clustering validation measures (in
particular the section on external clustering validation measures); and Chapter 22 on cluster
ensembles (in particular the section on measuring similarity between clustering solutions).

2 a.k.a. community mining; refer to Fortunato (2010) for a survey.
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2 Clustering Agreement Measures: Short Survey

Consider a dataset D consisting of n data items, D = {d1, d2, d3 . . . dn}. A par-
titioning U partitions D into k mutually disjoint subsets, U = {U1, U2 . . . Uk};
where D = ∪ki=1Ui and Ui ∩ Uj = ∅, ∀i 6= j. There are several measures de-
fined to examine the similarity, a.k.a agreement, between two partitionings of the
same dataset. More formally, let V denote another partitioning of the dataset D,
V = {V1, V2 . . . Vr}. Clustering agreement measures are originally introduced based
on counting the pairs of data items that are in the same/different partition in U

and V . Each pair (di, dj) of data items is classified into one of four groups based
on their co-memberships in U and V ; which results in the following pair-counts.

Same in V Different in V
Same in U M11 = TP M10 = FP
Different in U M01 = FN M00 = TN

Here, M11/M00 counts the number of pairs that are in the same/different par-
titions in both U and V . M10/M01 sums up those that belong to the same/different
partitions in U but are in different same/partitions according to V . When one of
these partitionings, for instance V , is the true partitioning i.e. the ground-truth,
these could also be referred to as the true/false positive/negative scores.

These pair counts are often derived using the following contingency table a.k.a.
confusion table (Hubert and Arabie, 1985). The contingency table is a k×r matrix
of all the possible overlaps between each pair of clusters in U and V , where its ijth

element shows the intersection of cluster Ui and Vj , i.e. nij = |Ui ∩ Vj |.

V1 V2 . . . Vr marginal sums
U1 n11 n12 . . . n1r n1.

U2 n21 n22 . . . n2r n2.

...
...

...
. . .

...
...

Uk nk1 nk2 . . . nkr nk.
marginal sums n.1 n.2 . . . n.r n

The last row and column show the marginal sums of ni. =
∑
j nij , and n.j =∑

i nij . In case of disjoint clusters, we further have ni. = |Ui|, and n.j = |Vj |. The
pair counts can then be computed using the following formulae.

M10 =
k∑
i=1

(
ni.
2

)
−

k∑
i=1

r∑
j=1

(
nij
2

)
, M01 =

r∑
j=1

(
n.j
2

)
−

k∑
i=1

r∑
j=1

(
nij
2

)

M11 =
k∑
i=1

r∑
j=1

(
nij
2

)
, M00 =

(
n

2

)
+

k∑
i=1

r∑
j=1

(
nij
2

)
−

k∑
i=1

(
ni.
2

)
−

r∑
j=1

(
n.j
2

)

These pair counts have been used to define a variety of different clustering agree-
ment measures (Manning et al., 2008). Here, we briefly explain the most common
measures; the reader can refer to Albatineh et al. (2006) for a complete survey.

Considering co-membership of data-points in the same or different clusters as
a binary variable, Jaccard agreement between clustering U and V is defined as:

J =
TP

(FP + FN + TP )
=

M11

(M01 +M10 +M11)
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Rand Index is defined similarly to Jaccard, but it also values pairs that belong
to different clusters in both partitionings, i.e. RI = (M11+M00)

(M11+M01+M10+M00)
, which

gives:

RI = 1 +
1

n2 − n (2
k∑
i=1

r∑
j=1

n2ij − (
k∑
i=1

n2i. +
r∑
j=1

n2.j)) (1)

F-measure is a weighted mean of the precision, P = M11/(M11 +M10), and recall,

R = M11/(M11 +M01), i.e. Fβ = (β2+1)PR
β2P+R ; where β indicates how much recall is

more important than precision, with the two common values of 2 and 1/2.
There is also a family of information theoretic based measures. These measures

consider the overlaps between clusters in U and V , as a joint distribution of two
random variables, i.e. the cluster memberships in U and V . The entropy of cluster
U , H(U), the joint entropy of U and V , H(U, V ), their mutual information, I(U, V ),
and theirVariation of Information (Meilă, 2007), V I(U, V ) are then defined as:

H(U) = −
k∑
i=1

ni.
n

log(
ni.
n

), H(V ) = −
r∑
j=1

n.j
n

log(
n.j
n

)

H(U, V ) = −
k∑
i=1

r∑
j=1

nij
n

log(
nij
n

), I(U, V ) =
k∑
i=1

r∑
j=1

nij
n

log(
nij/n

ni.n.j/n2
)

V I(U, V ) =
k∑
i=1

r∑
j=1

nij
n

log(
ni.n.j/n

2

n2ij/n
2

) (2)

All the pair counting measures defined here have a fixed range of [0, 1]. The
above information theoretic measures, however, do not have a fixed range. For
example, the mutual information ranges between (0, logk], and the range for V I
is [0, 2 log max(k, r)] (Wu et al., 2009). Having a fixed range, i.e. being normalized,
is a desired property for clustering agreement indexes, since we often require to
compare/average agreements over different datasets. Consequently, different nor-
malized forms for the mutual information are defined; refer to (Vinh et al., 2010)
for a survey. The most commonly used forms are:

NMIΣ =
2I(U, V )

H(U) +H(V )
and NMI√ =

I(U, V )√
H(U)H(V )

(3)

Beside having a fixed range, a clustering agreement measure should also return
the same value, usually zero, for agreement no better than random3 (Vinh et al.,
2010; Hubert and Arabie, 1985). Correction for chance is adjusting a measure to
have a constant expected value for agreements due to chance. This adjustment is
done based on an upper bound on the measure, Max[M ], and its expected value,
E[M ], using the following formula:

AM =
M − E[M ]

Max[M ]− E[M ]
(4)

The Adjusted Rand Index (ARI) is proposed by Hubert and Arabie (1985), assuming
that the contingency table is constructed randomly when the marginals are fixed,
i.e. the size of the clusters in U and V are fixed. With this assumption, RI is

3 In other words, it should have a constant baseline, i.e. the expected value of agreements
between two random clusterings of a same dataset. If not constant, an example of 0.7 agreement
value can be both a strong (when baseline is 0.2) or a weak (when baseline is 0.6) agreement.
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a linear transformation of
∑
i,j (nij2 ), and E

(∑
i,j (nij2 )

)
=
∑
i (ni.2 )

∑
j (n.j2 )/(n2).

Hence, adjusting RI with upper bound 1 results in the following formula:

ARI =

k∑
i=1

r∑
j=1

(nij2 )−
k∑
i=1

(ni.2 )
r∑
j=1

(n.j2 )/(n2)

1
2 [

k∑
i=1

(ni.2 ) +
r∑
j=1

(n.j2 )]−
k∑
i=1

(ni.2 )
r∑
j=1

(n.j2 )/(n2)

(5)

There is also an approximate formulation (Hubert and Arabie, 1985; Albatineh
et al., 2006) for this expectation defined as E(

∑
i,j n

2
ij) =

∑
i n

2
i.

∑
j n

2
.j/n

2, which
results in a slightly different formula for the ARI, i.e.

ARI ′ =

k∑
i=1

r∑
j=1

nij
2 −

k∑
i=1

ni.
2

r∑
j=1

n.j
2/n2

1
2 [

k∑
i=1

ni.2 +
r∑
j=1

n.j2]−
k∑
i=1

ni.2
r∑
j=1

n.j2/n2
(6)

There are several variations of pair counting agreement measures, such as
Gamma, Hubert, Pearson, etc. These measures, however, become similar or even
equivalent after correction for chance (Albatineh et al., 2006). Furthermore, it has
been shown that after correction for chance they also become equivalent to one
of the statistical inter-rater agreement indices4 (Warrens, 2008a). Specifically, the
equivalence of Cohen’s kappa, one the most widely used inter-rater agreement index,
and the ARI is proved by Warrens (2008b). Cohen’s kappa is a chance corrected
index of association defined for assessing the agreement between two raters, who
categorize data into k categories.

Correction for chance of the information theoretic measures is discussed by
Vinh et al. (2009). More specifically, they propose Adjusted Mutual Information as
AMI = (I − E[I])/(Max[I]− E[I]) using Equation 4; where different forms of AMI

are derived using different upper bounds on I as Max[I], which are:

I(U, V ) ≤ min(H(U), H(V )) ≤
√
H(U)H(V ) ≤ H(U)+H(V )

2 ≤ max(H(U), H(V )) ≤ H(U, V )

In particular, AMIsum, i.e. AMI with upper bound of [H(U) +H(V )]/2, is equivalent
to the Adjusted form for Variation of Information. On the other hand, the expected
value, E[I], is derived assuming the sizes of the clusters are fixed, i.e. similar to
the ARI’s assumption on the hypergeometric model of randomness, as:

E[I(U, V )] =
∑
i,j

min(ni.,n.j)∑
m=max(ni.+n.j−n,1)

m
n log( nm

ni.n.j
)

ni.!n.j !(n−ni.)!(n−n.j)!
n!m!(ni.−m)!(n.j−m)!(n−ni.−n.j+m)!

This formulation includes big factorials, therefore is computationally complex;
which makes AMI less practical when compared to the ARI.

4 The well-studied inter-rater agreement indices in statistics are defined to measure the
agreement between different coders, or judges on categorizing the same data. Examples are the
goodness of fit, chi-square test, the likelihood chi-square, kappa measure of agreement, Fisher’s
exact test, Krippendroff’s alpha, etc. (see test 16 in (Cortina-Borja, 2012)). These statistical
tests are also defined based on the contingency table which displays the multivariate frequency
distribution of the (categorical) variables.
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3 Generalization of Clustering Agreement Measures

Both families of pair counting and information theoretic measures quantify the
agreement between two clusterings based on their contingency table. Here, we
generalize them, and show that they are both measuring the (normalized) sum of
the divergences in rows (and columns) of this table; whereas the perfect agreement
occurs if the sum is zero5. Our generalization is symmetric and is defined based
on the relation between the Rand Index (RI) and the Variation of Information
(V I), which are respectively a representative for the pair counting and information
theoretic families.

Proposition 1 VI (RI) of two partitionings is proportional to the conditional en-

tropies (variances) of memberships in them (see Appendix A.1 for proof), i.e.

V I(U, V ) = H(U |V ) +H(V |U) and RI(U, V ) ∝ V ar(U |V ) + V ar(V |U)

Based on this proposition, we define the generalized distance for clusterings as:

Definition 1 Generalized Clustering Distance (D)

Dηϕ(U, V ) = Dηϕ(U ||V ) +Dηϕ(V ||U), Dηϕ(U ||V ) =
∑
v∈V

[
ϕ(
∑
u∈U

ηuv)−
∑
u∈U

ϕ(ηuv)

]
where ηuv quantifies the similarity between the two clusters of u ∈ U and v ∈ V ,
i.e. η : 2V × 2U → R; and ϕ : R → R is a non-linear function, such that ϕ(

∑
x) 6=∑

ϕ(x), which is used to quantify the divergence or dispersion in a set of numbers.

This generalized formula can be extended to define novel clustering distances,
using the flexibility that the ϕ and η functions provide6. More specifically, η is any
function that transforms the two given clusterings into a contingency table. The
distance between the clusterings is then measured by adding up the dispersion in
each row (and column) of this table. Function ϕ is used to quantify how disperse
are the values in each row (and column), i.e. to measure the divergence from a
spike distribution, observed if the corresponding clusters are perfectly matched.

Corollary 1 D is bounded if ϕ is a positive superadditive function (proof in Ap-

pendix A.2), i.e.

ϕ(x) ≥ 0 ∧ ϕ(x+ y) ≥ ϕ(x) + ϕ(y) =⇒ 0 ≤ Dηϕ(U ||V ) ≤ ϕ(
∑
v∈V

∑
u∈U

ηuv)

Using this bound as a normalizing factor, we define:

Definition 2 Normalized Generalized Clustering Distance (ND)

NDηϕ(U, V ) =
Dηϕ(U, V )

NF (U, V )
, NF (U, V ) = ϕ(

∑
v∈V

∑
u∈U

ηuv)

5 Which happens when the clusterings are identical, and only the order of the clusters is
permuted, i.e. the distribution of overlaps in each row/column of the contingency table has a
single spike on the matched cluster and is zero elsewhere.

6 For example, we introduce an extension of this generalization for clusterings of nodes in
graphs, a.k.a. communities, in the following section.
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Here, we first show that both the Rand Index (RI) and the (normalized) Vari-
ation of Information (V I) generate from the proposed normalized distance (ND).
Then, we introduce the adjusted form for ND, and show that the Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI) both derive from this
adjusted form. More specifically,

Identity 1 The Variation of Information (Equation 2) derives from ND if we set

ϕ(x) = x log x, and η as the overlap size: ηuv = |u ∩ v| (proof in Appendix A.3), i.e.

ND|∩|x log x(U, V ) ≡ V I(U, V )

log n

Identity 2 The Rand Index (Equation 1) derives from ND if we set ϕ(x) = (x2), and

η as the overlap size (proof in Appendix A.4), i.e.

ND|∩|
(x2)

(U, V ) ≡ 1−RI(U, V ), also ND|∩|x2 (U, V ) ≡ 1−RI ′(U, V )

Similar to the Identity 2, in the rest of this paper, we consider clustering agree-
ment (I) and normalized distance (ND) interchangeably, i.e. using I = 1−ND.

We further adjust the generalized distance to take its maximum, i.e. one, if
U and V are independent. Assume PU,V (u, v) = ηuv/

∑
uv ηuv as the joint prob-

ability distribution with the marginals of PU (u) =
∑
v PU,V (u, v) = η.v/

∑
uv ηuv

and PV (v) = ηu./
∑
uv ηuv. Then the independence condition for U and V , i.e.

PU,V (u, v) = PU (u)PV (v), translates into ηuv = ηu.η.v/
∑
uv ηuv. On the other hand,

from Definition 1, we have:

Dηϕ(U, V ) =
∑
v∈V

ϕ(η.v) +
∑
u∈U

ϕ(ηu.)− 2
∑
v∈V

∑
u∈U

ϕ(ηuv)

Therefore, we define the adjusted distance as:

Definition 3 Adjusted Generalized Clustering Distance (AD)

ADηϕ =
Dηϕ(U, V )

NF (U, V )
, NF =

∑
v∈V

ϕ(η.v) +
∑
u∈U

ϕ(ηu.)− 2
∑
u∈U

∑
v∈V

ϕ

 η.vηu.∑
u∈U

∑
v∈V

ηuv


Identity 3 The Normalized Mutual Information (Equation 3) derives from AD, if we

set ϕ(x) = xlogx, and η as the overlap size: ηuv = |u∩v| (proof in Appendix A.5), i.e.

AD|∩|xlogx(U, V ) ≡ 1−NMIsum(U, V )

Identity 4 The Adjusted Rand Index of Equation 5 and Equation 6 derive from AD,

if we set ϕ(x) = x(x−1) and ϕ(x) = x2 respectively, where η is the overlap size, (proof

in Appendix A.5), i.e.

AD|∩|x2 (U, V ) ≡ 1−ARI ′(U, V ), AD|∩|
(x2)

(U, V ) ∼= 1−ARI(U, V )

This line of generalization is similar to the works in Bergman Divergence and f -
divergences. For example, the mutual information and variance are proved to be
special cases of Bergman information (Banerjee et al., 2005). The (reverse) KL
divergence and Pearson χ2 are shown to be f -divergences when the generator is
x log x and (x−1)2 respectively (Nielsen and Nock, 2014). Beside this analogy, our
generalized measure is different from these divergences. One could consider our
proposed measure as an (adjusted normalized) conditional Bergman entropy for
clusterings. This relation is however non-trivial and is out of scope of this paper.
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Fig. 1: An example graph clustered in three different ways: by clustering V (i.e. true cluster-
ing), and by U1 and U2 (i.e. two candidate clusterings). Considering only the number of nodes
in the overlaps and ignoring the edges, U1 and U2 have the same contingency table with V ,
i.e. | ∩ |(U1, V ) = | ∩ |(U2, V ) = {{5, 0}, {1, 3}}. Therefore, they have the same agreement with
V , regardless of the choice of the agreement measure: ARI, NMI, etc. However if considering
the edges, U1 is more similar to the true clustering V . This could be enforced using an alter-
native overlap function that incorporates edges, such as the degree weighted overlap function,
by which we get: Σd(U1, V ) = {{18, 0}, {3, 9}} and Σd(U2, V ) = {{14, 0}, {7, 9}}; or the edge
based variation, which gives: ξ(U1, V ) = {{7, 0}, {0, 3}} and ξ(U2, V ) = {{4, 0}, {0, 3}}.

3.1 Extension for Inter-related Data

The common clustering agreement measures introduced in the previous section,
only consider memberships of data-points in clusters, and overlook the attributes of

individual data-points or any relations between them. This overlook is problematic,
as also mentioned by a few previous works. For example, Zhou et al. (2005) il-
lustrate the issue of ignoring the distances between data-points7 when comparing
clusterings; and propose a measure which incorporates the distances between the
representatives of clusters. This overlook is in particular important when compar-
ing clusterings of nodes within information networks. An information network en-
codes relationships between data-points, and a clustering on such network forms
sub-graphs. Using the original clustering agreement measures, we only consider
the nodes in measuring the clustering distance. One should however also consider
edges when comparing two sub-graphs; see Figure 1 for a clarifying example.

To incorporate the structure of the data in our generalized distance (Defini-
tion 1), we simply modify the overlap function η. The generator overlap function
for the original measures (RI, V I, ARI, and NMI) is | ∩ | : ηuv =

∑
i∈u∩v 1; which

counts the number of common nodes. Therefore, the first intuitive modification to
incorporate the structure is to consider a degree weighted function as:

Σd : ηuv =
∑
i∈u∩v

di

Using this η, well-connected nodes with higher degree weigh more in the distance.
Another possibility is to alter η to directly assess the structural similarity of these
sub-graphs by counting their common edges, as:

ξ : ηuv =
∑

i,j∈u∩v
Aij

One can consider many other alternatives for measuring the overlaps based on
the application at hand8. We revisit and delve deeper in this topic in Section 4,
after providing an alternative formulation for the clustering distance or agreement
measures.

7 Which are measured based on the properties and attributes of data-points.
8 Refer to the supplementary materials for more information, available at:

https://github.com/rabbanyk/CommunityEvaluation
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(a) Omega example: the extended pair-
counts matrices of U1 and U2 with V are re-
spectively {{3, 0, 0}, {1, 1, 1}, {2, 0, 1}}, and
{{3, 0, 0}, {3, 2, 0}, {0, 2, 0}}. In the latter,
the second row corresponds to the pairs of
nodes which are together in one cluster in V ;
where 3, 2, and 0 of them are respectively
clusters together in 0, 1, and 2 clusters of U2.

(b) Matching example: using the original for-
mulation we have NMI(U1, V ) = 0.78 and
NMI(U2, V ) = 0.71; whereas the overlapping
version results in NMI′(U1, V ) = 0.61 and
NMI′(U2, V ) = 0.62 with Lancichinetti et al.
(2008a) extension and NMI′′(U1, V ) = 0.53
and NMI′′(U2, V ) = 0.61 with the extension
proposed by McDaid et al. (2011).

Fig. 2: Example for the limitation of Omega index on the left: the pair-counts table for
U1 and U2 with V have the same trace, and therefore U1 and U2 have the same agreement with
V according to the Omega index; whereas U2 should have been ranked more similar. Example
for the problem of matching on the right: using the set matching based measures, such as
the overlapping version of the NMI, clustering U2 is in higher agreement with V , while the
non-overlapping version of NMI suggests the opposite9.

3.2 Extension for Overlapping Clusters

There are several non-trivial extensions of the clustering agreement measures for
the crisp overlapping clusters. Notably, Collins and Dent (1988) proposed the
Omega index as a generalization of the (adjusted) rand index; which expands the
2×2 pair-counts table {{M00,M10}, {M01,M11}}; i.e. Mij counts the pairs of data-
points which appeared together in i clusters of U and j clusters of V . Similar to
the RI, trace of this matrix, i.e.

∑
iMii, gives the agreement index, which is

further adjusted for chance using the marginals of M . The Omega index reduces
to the (A)RI if the clusterings are disjoint. However, it only considers the pairs
that appeared in the exact same number of clusters together, which is not ideal.
Figure 2a provides an example for the issue of this limitation. Another commonly
used measure is the overlapping extension of NMI proposed by Lancichinetti et al.
(2008a). This extension does not reduce to the original NMI if the clusterings
are disjoint. Moreover, it assumes a matching between clusters in U and V , and
only compares the best matched clusters. Therefore, it suffers from the “problem
of matching” (Meilă, 2007), which is an inherent problem for any index defined
based on the best matching of clusters10; Figure 2b gives a visualized example.

There is also a line of work on extending the agreement indexes for fuzzy
clusters with soft memberships (Brouwer, 2008; Quere et al., 2010; Campello,
2010; Anderson et al., 2010; Hullermeier et al., 2012). The fuzzy measures are
not applicable to cases where a data-point could fully belong to more than one
cluster, i.e. crisp overlappings (e.g. V in Figure 3); which are common in clusters in
networks, a.k.a communities. However, the bonding concept presented by Brouwer
(2008) is similar to the main idea behind our extension for overlapping cases, which
we introduce in the next section.

9 Here we used a disjoint example to be able to compare the results quantitatively with the
original NMI; the same problem however exists for any matching based measure, regardless
of the overlapping or disjoint.
10 Other examples of matching based agreements are the Balanced Error Rate with align-

ment, average F1 score, and Recall measures used in (Yang and Leskovec, 2013; Mcauley and
Leskovec, 2014; McDaid et al., 2011).
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The extension of the proposed D formula (Definitions 1, 2, and 3) for over-
lapping clusters is not straightforward. The (A/N )D formula is indeed bounded
for overlapping clusters, and reduces to the original formulation if we have dis-
joint covering clusters. However, the current formulation is not appropriate for
comparing overlapping clusters, since it treats overlaps as variations and penalizes
them. Consider an extreme example when we are comparing two identical clus-
terings, and therefore we should have (A/N )D = 0 (i.e. the perfect agreement);
this is true if there is no overlapping nodes, however as the number of overlap-
ping nodes increases, (A/N )D also increases (i.e. the agreement decreases). This
is an inherent problem in any agreement measure formulated based on the contin-
gency/confusion table, since overlaps in the data are confused with the overlaps
between the matched clusters. We overcome this problem by proposing an alter-
native formulation for the clustering agreement measures, presented in the next
section. More generally, the difficulty of computing the agreement of different
clusterings, and in particular their extension for general cases such as overlapping
clusters, comes from the fact that there is no matching between the clusters from
the two clusterings. Therefore, one should consider all the permutations (e.g. us-
ing the contingency table), or only consider the best matching, which is cursed
with the “problem of matching” as discussed earlier. Alternatively, we propose an
algebraic formulation which takes the permutation out of the equation.

4 Algebraic Formulation for Clustering Distance

We first show that the proposed generalized formulae in Section 2 can be reformu-
lated in terms of matrices. These formulae are defined based on the contingency
table of U and V , which we obtain from the η overlap function. We can denote
this contingency table with a k × r matrix, i.e. Nk×r. Then, we can rewrite D
(Definition 1) and ND (Definition 2) as follows:

Dϕ =
[
1ϕ(N1T )− 1ϕ(N)1T

]
+
[
ϕ(1N)1T − 1ϕ(N)1T

]
, NDϕ =

Dϕ
ϕ(1N1T )

where 1 is a vector of ones with appropriate shape so that the matrix-vector
product is valid, i.e. 1N = [n.1, n.2, . . . n.r], and N1T = [n1., n2., . . . nk.]

T ; and ϕ is
applied element-wise to the given matrix. In the same manner, we can reformulate
AD (Definition 3) as:

ADϕ =
Dϕ

1
2 [1ϕ(N1T ) + ϕ(1N)1T ]− E

, E = 1ϕ(
(N1T )× (1N)

1N1T
)1T

Naturally, the identities proved in Section 2 still hold; for example, when η gives the
overlap sizes, the normalized Variation of Information derives from Dϕ(x)=x log x

(Identity 1); and 1−NDϕ(x)=(x2)
is equivalent to the rand index (Identity 2).

These formulations based on the contingency matrix, as also discussed in Sec-
tion 3.2, are only appropriate for disjoint clusters. Therefore in the following, we
propose another reformulation, which is not defined based on the contingency ma-
trix, and is valid for both disjoint and overlapping cases. In more details, let Un×k
denote a general representation for a clustering of a dataset with n data-points;
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V =



b r g
0 1 0 0
1 1 0 0
2 1 0 0
3 1 1 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1


10×3

U1 =



b r g
0 1 0 0
1 1 0 0
2 1 0 0
3 .6 .4 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1


10×3

U2 =



b r g
0 2 0 0
1 2 0 0
2 1 0 0
3 1 1 0
4 0 2 0
5 0 2 0
6 0 3 0
7 0 0 2
8 0 0 2
9 0 0 2


10×3

Fig. 3: Example of general matrix representation for a clustering: V and U1 are the classic
overlapping clusters with crisp, and soft memberships respectively. Node 3 fully belongs to
both blue and red clusters in V , wherein U1, it belongs 60% to the blue cluster and 40% to
the red cluster. This representation is general in a sense that it could encode membership of
nodes to clusters in any form, with no assumptions on the matrix.

i.e. uik represents the memberships of node i in the kth cluster of U . Different con-
straints on this representation derive different cases of clustering11; see Figure 3
for examples. Then, the contingency matrix of U and V obtained by η = | ∩ | (e.g.
in Identity 1), which indicates the size of overlaps between all pairs of clusters in
Ud×k and Vd×r, can also be derived from:

N = (UTV )k×r = (V TU)Tk×r

On the other hand, there is an analogy between co-membership and overlap, i.e.
(UUT )ij denotes in how many clusters node i and j appeared together, and
(UTU)ij denotes how many nodes clusters i and j have in common. Inspired by
this analogy, we propose to measure the distance between clusterings directly by
comparing their co-membership matrices, i.e. (UUT )n×n v.s. (V V T )n×n, instead
of their contingency/overlap matrix, i.e. (UTV )k×r. More specifically, we consider
the clustering co-membership difference as follows, and then show that both the
rand index (RI) and the adjusted rand index (ARI) derive from different normal-
ization of this difference.

Definition 4 Clustering Co-Membership Difference Matrix (∆)

∆(U, V ) = (UUT − V V T )n×n

To calculate the distance between U and V , we need to quantify ∆ using a matrix
function: Rn×n → R, e.g. a matrix norm. In particular, the RI and ARI are
different normalized form of ∆ when we use the Frobenius matrix norm, i.e.

Identity 5 The Rand Index of Equation 1 derives from ∆, i.e.

‖∆(U, V )‖2F
m× n(n− 1)

≡ 1−RI(U, V ) , also
‖∆(U, V )‖2F

m× n2 ≡ 1−RI ′(U, V )

where ‖.‖2F sums the squared values of the given matrix, a.k.a. squared Frobenius norm;

and m = [max(max(UUT ),max(V V T ))]2, which is equal to one for disjoint clusters.

11 For crisp clusters (a.k.a strict membership), uik is restricted to 0, 1 (1 if node i belongs to
cluster k and 0 otherwise); whereas for probabilistic clusters (or soft membership), uik could
be any real number in [0, 1]. Fuzzy clusters usually assume an additional constraint that the
total membership of a data-point is equal to one, i.e. ui. =

∑
k uik = 1. Which should also be

true for disjoint clusters, since each data-point can only belong to one cluster.
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V =



b r g
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1


U =



b r

0 1 0
1 1 0
2 1 0
3 0 1
4 0 1
5 0 1
6 0 1
7 1 0
8 1 0
9 1 0



⇒ N = UTV =
[
3 0 3
1 3 0

]
, 1ϕ(N)1T = 9

N1T = [6, 4] , 1ϕ(N1T ) = 21

1N = [4, 3, 3] , ϕ(1N)1T = 12

⇒ D = 0.667, AD = 0.312

V V T

1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1



−

−

UUT

1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1



∆=

=



0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1
1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0



⇒ ‖∆‖2F = 30

NFRI = 90⇒ D = 0.667

‖V V T ′‖2F = |V V T ′| = 24

‖UUT ′‖2F = |UUT ′| = 42

NFARI = 43.5⇒ AD = 0.312

Fig. 4: Example for contingency v.s. co-membership based formulation. The (A)RI is first
derived from the contingency table N , using D formula where ϕ(x) = x(x− 1)/2. Then same
results are derived from the comparison of co-membership matrices UUT and V V T , using the
alternative formulation of D, where A′n×n = A− In.

The normalization factor for the Rand Index in the Identity 5, assumes an unlikely
worse case scenario when all pairs are in disagreements. The ARI normalization
in Identity 6, on the other hand, adopts the expected difference when UUT and
V V T are independent; refer to the Appendix A.6 for details on the derivation of
these normalizing factors and proofs of these two Identities.

Identity 6 The Adjusted Rand Index of Equation 6 derives from ∆, i.e.

‖∆(U, V )‖2F
‖UUT ‖2F + ‖V V T ‖2F − 2(|UUT ||V V T |)/n2

≡ 1−ARI ′(U, V )

where |.| is the sum of all elements in the matrix.

The ARI of Equation 5 derives from the same formula, if we set the diagonal
elements of the co-membership matrices to zero, i.e. (UUT )′ = UUT − In. Since
the original ARI formula counts only the co-memberships of different nodes, i.e.
(i, j) where i 6= j; whereas, ARI ′ also considers the co-memberships for each single
node with itself in different clusters, which is more suitable for overlapping cases.

The ∆-based formulations for RI (Identity 5) and ARI (Identity 6), denoted
respectively by RIδ and ARIδ hereafter, not only are identical to the original for-
mulations if the clusterings are disjoint (see Figure 4 for an example), but are also
valid for overlapping cases (see Figure 5 for examples). Unlike the prior contin-
gency based formulations (i.e. Definition 1, 2, and 3), RIδ and ARIδ do not need
to consider all permutations of the matched clusters using their pair-wise over-
laps, and hence will not confuse the natural overlaps in the data with the overlaps
of matched clusters used to compute the agreements. For the extreme example
discussed earlier in Section 3.2, RIδ and ARIδ always return 1 if the clusterings
are identical, regardless of the amount of the overlapping nodes. Figure 5 shows
the other two test case examples from Section 3.2, and compares the results from
RIδ and ARIδ with the other alternative overlapping measures (i.e. Omega index
and two overlapping versions of NMI); where unlike these alternatives, the new
δ-based measures rank the agreements correctly.

It is worth mentioning that, the Omega Index(ω) (Collins and Dent, 1988) can
also be derived from comparing the co-membership matrices. In more details, if
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V U1 U2

ω Aω RIδ ARIδ RI′δ ARI′δ
(V, U1) 0.5 0.22 0.80 0.25 0.90 0.32
(V, U2) 0.5 0.19 0.88 0.49 0.94 0.58

(a) Revisit to Figure 2a. Reported in the ta-
ble are values for Omega index (ω), and its
adjusted version (Aω), followed by our ex-
act and approximate (marked by ′) δ-based
(A)RI, derived from the proposed clustering
co-memberships distance ∆.

V U1 U2

NMI NMI′ NMI′′ RIδ ARIδ RI′δ ARI′δ
(V, U1) 0.78 0.61 0.53 0.84 0.66 0.85 0.70
(V, U2) 0.71 0.62 0.61 0.78 0.47 0.80 0.57

(b) Revisit to Figure 2b. Here our exact and ap-
proximate co-membership based formulations are
in agreement with the original non-overlapping
NMI, and give a higher similarity score to U1.
Whereas the two overlapping NMI extensions
state the opposite.

Fig. 5: Revisit to the examples of Figure 2. On the left we see that Omega index (ω) is unable
to differentiate between U1 and U2, whereas its adjusted version even gives higher score to U1,
which is the opposite of what we expect. The fact that U2 is more similar to V is captured
by our δ-based (A)RI. On the right we see an example of disagreement between the original
NMI and its two set-matching based extensions for overlapping cases. Here since the problem
is disjoint, (A)RIδ gives same results as the original (A)RI.

we define Ω = [UUT == V V T ], i.e. Ωij = 1 if (UUT )ij == (V V T )ij and zero
otherwise; and assuming fA(i) denotes the frequency of value i in matrix A, then
ω and its adjusted version (Aω) can be calculated as:

ω = |Ω| − tr(Ω), Aω =
ω − E[ω]

1− E[ω]
, where E[ω] =

min(r,k)∑
i=0

fUUT (i)fV V T (i)

Similarly, we can compare the co-membership matrices of UUT and V V T in other
way, e.g. using matrix divergences (Dhillon and Tropp, 2007; Kulis et al., 2009);
or considering other normalized12 forms of ∆ . In our experiments, we examine
these two variations:

Dnorm =
‖UUT−V V T ‖2F
‖UUT ‖2F+‖V V T ‖2F

, I√tr = tr(UUTV V T )√
tr((UUT )2)tr((V V T )2)

= |UUT ◦V V T |
‖UUT ‖2F ‖V V T ‖2F

We conclude this section by presenting the extension of these algebric refor-
mulations for network clustering. Let N denote the structure of the graph G as
an incidence matrix, i.e. Nik =

√
Aij if node i is incident with edge k = (i, j),

and zero otherwise. Assuming a clustering as a transformation which assigns each
data-point to one of its k clusters, i.e. U : n 7→ k , we can incorporate the structure
by measuring the distance between the transformed data by U and V as:

D⊥(U, V |G) = D(NTU,NTV )

Figure 6 provides an intuitive example for this transformation. This transforma-
tion generates overlaps, hence only the new reformulations, which are valid for
overlapping clusters, are applicable as D; e.g. the ARIδ. One should also note
that, this is very similar to counting the edges using overlap function ξ introduced
earlier in Section 3.1.

12 It is also worth pointing out that in some applications, such as ensemble or multi-view
clustering, we may not need the normalization and a measure of distance may suffice.
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G :

NT =



1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1



V =



b r

0 1 0
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 0 1
7 0 1
8 0 1


U1 =



b r

0 0 1
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 0 1
7 0 1
8 0 1


U2 =



b r

0 1 0
1 1 0
2 1 0
3 1 0
4 1 0
5 0 1
6 0 1
7 0 1
8 0 1



NT V =



b r

0 2 0
1 2 0
2 2 0
3 2 0
4 2 0
5 2 0
6 2 0
7 2 0
8 2 0
9 1 1
10 1 1
11 0 2
12 1 1
13 0 2
14 0 2



NTU1 =



b r

0 1 1
1 2 0
2 2 0
3 2 0
4 1 1
5 2 0
6 2 0
7 2 0
8 2 0
9 0 2
10 1 1
11 0 2
12 1 1
13 0 2
14 0 2



NTU2 =



b r

0 2 0
1 2 0
2 2 0
3 2 0
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
10 0 2
11 0 2
12 0 2
13 0 2
14 0 2


Fig. 6: A revisits to the example of Figure 1. Top) In the original data and considering
only nodes, U1 and U2 have the same agreement with V . Since both U1 and U2 have one
node clustered differently than V . Bottom) Transformed data using corresponding clusterings
correctly identifies that U1 is closer to V compared to U2. Note that the transformed data is
similar to the line graph (edges as nodes) of the original data.

I : RIδ ARIδ RI′δ ARI′δ Inorm I√tr
(V, U1) 0.778 0.556 0.802 0.604 0.695 0.815
(V, U2) 0.778 0.556 0.802 0.604 0.695 0.815

C⊥(V, U1|G) 0.926 0.744 0.928 0.752 0.799 0.923
C⊥(V, U2|G) 0.857 0.417 0.859 0.435 0.708 0.844
C+(V, U1|G) 0.889 0.773 0.901 0.797 0.843 0.904
C+(V, U2|G) 0.833 0.660 0.900 0.776 0.832 0.885

(N,V ) 0.750 0.500 0.979 0.327 0.512 0.662
(N,U1) 0.750 0.491 0.979 0.337 0.503 0.668
(N,U2) 0.639 0.264 0.977 0.275 0.481 0.616

Table 1: Results of different agreement measures for the test case of Figure 1 (and Figure 6).
For example looking at ARI′δ, from the structure independent version we have ARI′δ(V, U1) =
ARI′δ(V, U2) = 0.604; whereas when considering the structure, both C⊥ARI

′
δ and C+ARI′δ

rank U1 in higher agreement with V compared to U2, i.e. C⊥ARI
′
δ(V, U1|G) = 0.752 >

C⊥ARI
′
δ(V, U2|G) = 0.435 and C+ARI′δ(V, U1|G) = 0.797 > C+ARI′δ(V, U2|G) = 0.776.

Alternatively, we can assume each edge as a cluster of two nodes, and measure
the distance of a clustering from the underlying structure of the graph. Conse-
quently, the structure dependent distance of U and V can be defined as a combi-
nation of D(U,N), D(V,N) and D(U, V ), for example:

D+(U, V |G) = αD(U, V ) + (1− α)|D(U,N)−D(V,N)|, α = 0.5

Table 1, Table 2 and Table 3 compare the structure dependent and independent
measures for our earlier test case examples in Figure 1, Figure 2a, and Figure 2b,
respectively. The first two rows of these tables show the structure independent
measures, the next four rows are the structure based versions, and the last three
rows show the agreement of each clustering directly with the structure.

In particular in Table 1, we see that unlike the original structure independent
measures which result in the same agreement for U1 and U2, all the structure
based extensions correctly give higher agreement score to U1 compared to U2. We
can also see that U1, when compared to U2, has in fact more agreement with the
structure of the underlying graph.
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I : RIδ ARIδ RI′δ ARI′δ Inorm I√tr
(V, U1) 0.800 0.245 0.902 0.318 0.532 0.764
(V, U2) 0.875 0.490 0.942 0.577 0.663 0.894

C⊥(V, U1|G) 0.856 0.186 0.868 0.211 0.536 0.860
C⊥(V, U2|G) 0.913 0.427 0.924 0.483 0.672 0.961
C+(V, U1|G) 0.775 0.556 0.919 0.617 0.720 0.859
C+(V, U2|G) 0.863 0.712 0.954 0.765 0.824 0.945

(N,V ) 0.850 0.333 0.933 0.528 0.682 0.816
(N,U1) 0.600 0.200 0.870 0.444 0.590 0.771
(N,U2) 0.700 0.400 0.900 0.576 0.666 0.822

Table 2: Results of different agreements for the omega example of Figure 2a.

I : RIδ ARIδ RI′δ ARI′δ Inorm I√tr
(V, U1) 0.836 0.660 0.851 0.703 0.705 0.840
(V, U2) 0.782 0.471 0.802 0.567 0.626 0.721

C⊥(V, U1|G) 0.900 0.790 0.906 0.806 0.768 0.902
C⊥(V, U2|G) 0.857 0.564 0.862 0.607 0.667 0.798
C+(V, U1|G) 0.855 0.708 0.922 0.793 0.839 0.866
C+(V, U2|G) 0.818 0.556 0.897 0.716 0.782 0.804

(N,V ) 0.945 0.865 0.977 0.620 0.615 0.814
(N,U1) 0.818 0.621 0.970 0.502 0.589 0.707
(N,U2) 0.800 0.506 0.968 0.485 0.552 0.702

Table 3: Results of different agreements for the matching example of Figure 2b.

Table 2 and Table 3 extend the results presented in Figure 5 for the two overlap-
ping test case examples. Here we see that the results of the structure dependent
measures are consistent with the structure independent measures; however, the
structure dependent agreements become stronger than the independent versions
in Table 3, while getting weaker in Table 2. This is due to the fact that the clus-
terings in Figure 5b better correspond with the structure of the underling graph,
when compared to the clusterings of Figure 5a.

5 Experimental Results on Community Mining Evaluation

Here, we examine the clustering agreement measures, introduced in this paper, in
the context of community mining evaluation; which is their most common appli-
cation. More specifically, we select a set of common community mining methods,
which discover clusters in a given network based on different methodologies. We
then rank their performance according to different clustering agreement measures;
which compare the results of these methods with the ground-truth clustering.
However, the purpose here is not to compare the general performance of commu-
nity mining methods, but rather to show different comparisons/rankings we obtain
using different agreement measures.

In more details, datasets are generated using LFR (Lancichinetti et al., 2008b)
benchmarks13, which are commonly used in the evaluation and comparison of
community mining algorithms. The selected methods are: Louvain (Blondel et al.,
2008), WalkTrap (Pons and Latapy, 2005), PottsModel (Ronhovde and Nussinov,

13 Parameters are chosen similar to the experiments by Lancichinetti and Fortunato (2009),
i.e. networks with 1000 nodes, average degree of 20, max degree of 50, and power law degree
exponent of -2; where the size of communities follows a power law distribution with exponent
of -1, and ranges between 20 to 100 nodes. Results for other parameter settings, including
smaller sized communities, 10 to 50, could be found in the supplementary materials.
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Fig. 7: The agreement of results from different community detection algorithms with the
ground-truth in unweighted LFR benchmarks, plotted as a function of the mixing parameter
(µt). In the last three plots, similar measures are overlaid to show they are highly similar.

2009), FastModularity (Newman, 2004), and InfoMap (Rosvall and Bergstrom,
2008) for disjoint clusterings of Section 5.1 and 5.2; and COPRA (Gregory, 2010),
MOSES (McDaid and Hurley, 2010), OSLOM (Lancichinetti et al., 2011), and
BIGCLAM (Yang and Leskovec, 2013) for overlapping clusterings in Section 5.3.
The authors’ original implementations are used for the methods, with no parameter
tuning (defaults are used); and the reported results are averaged over ten runs.

5.1 Classic Measures

Figure 7 shows the rankings of the selected algorithms with respect to six common
agreement measures14. First, we can see that the rankings are overall consistent,
which is expected since these indices are measuring the agreement with similar
principle, as shown with our generalizations. Second, from the plot for NMI we
can observe its bias in favor of the large number of clusters (Vinh et al., 2009);
i.e. for large mixing parameters, when PottsModel algorithms detects significantly
more communities, NMI∑ and NMI√. rank the PottsModel significantly higher;
which is not true according to all the other measures. The opposite bias is also
observed in the plots of V I, where the algorithm that finds significantly less com-
munities is ranked significantly higher, i.e. Infomap. Based on these observation,
we advise against using these two measures, particularly if the number of discov-
ered clusters/communities might be very different from the ground-truth. Third,

14 Similar trends are observed for other variations of the agreement measures which can be
found in the supplementary materials.
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Fig. 8: Comparison of the agreement indexes on weighted LFR benchmark, when the mixing
parameter for weights varies and the mixing parameter for topology is fixed to 0.5.

from the plot for ARI we can see that there is no clear difference between the rank-
ings obtained by ARI of Equation 5 and Equation 6, which are plotted as ARIδ
and ARI ′δ respectively15. The latter is less commonly used, whilst its extended
form presented in Section 4 is more appropriate for overlapping cases; hence we
recommend using ARI ′ in general.

5.2 Structure Dependent Measures

Figure 8 compares the selected methods over weighted LFR benchmarks. These
methods all result in clusterings which correspond well with the underlying struc-
ture, therefore the effect of ignoring the structure in comparing the clusterings is
less apparent. The rankings are overall consistent, however, we can still observe the
difference between the structure dependent and independent agreement measures,
which became clear only with the presence of weights. In more details, we can
see that the Walktrap method is performing better according to all the measures,
however its superiority is more significant according to the structure dependent
measures: i.e. ARIξx2 , and ARIΣdx2 introduced in Section 3.1, and C⊥ARI

′ intro-
duced in Section 4. On the other hand, C+ARI

′ does not decrease to zero similar
to the other measures; since both the results and the ground-truth are with the
same distance from the structure. Being less consistent with the other measures,
we recommend using the three former structure dependent forms.

15 The δ subscript indicates that the ARI is computed based on our δ-based formulation,
which is equivalent to the original ARI in this experiment, since communities are covering all
nodes and non-overlapping (Identity 6).
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Fig. 9: Comparison of agreement indexes on unweighted overlapping LFR benchmark, where
the fraction of overlapping nodes varies, the mixing parameter for topology is fixed to 0.1,
and the maximum number of communities a node can belong to is limited to 2; similar to
experiments in (Lancichinetti et al., 2011).

5.3 Overlapping Measures

Figure 9 shows the comparison of the selected methods based on the different
overlapping agreement indexes, which are: the overlapping extensions of NMI, i.e.
NMI ′ by Lancichinetti et al. (2008a) and NMI ′′ by McDaid et al. (2011); the
omega index (ω), and its adjusted version (Aω); and our δ-based formulations for
the RI and ARI, i.e. RI ′δ, and ARI ′δ, which naturally extend to overlapping cases.
Obtained rankings are generally consistent, similar to the previous experiments.
First, we can see that the unadjusted measures, i.e. ω and RI ′δ, can not properly
differentiate between the different algorithms, which makes them unfavorable. Sec-

ondly, we observe the “problem of matching” with the overlapping extensions of
NMI, described earlier in Section 3.2. In more details, MOSES algorithm results
in finer grained and thus more communities, which are more likely to not get
matched/compared with the communities in the ground-truth, when applying a
set-matching based agreement measure. Therefore it gets unfairly penalized, and
is ranked significantly lower than the OSLOM. Their difference, however, is less
significant according to both adjusted omega, Aω, and our overlapping extension
of ARI, ARI ′δ; whereas the quality of the MOSES results are higher than OSLOM
according to the Q-modularity of Newman (2004). Lastly, in this setting the dif-
ference between Aω and ARI ′δ is not as clear as it could be, since each node can
only belong to at most two communities; whereas the difference becomes clear if
a node can belong to many communities, refer to Section 4 for more details.
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6 Conclusions and Recommendations

In this paper, we presented a generalized clustering distance, from which we can
derive the two commonly used clustering agreement measures, i.e. NMI and ARI.
Not only this generalization sheds light on the relation between these two mea-
sures, but we also recommend using the derived formulae from this distance over
the original formulations; since, first, they are identical when the original mea-
sures are defined; second, they require less assumptions on the clusterings and
hence apply to more general cases, e.g. when there are un-clustered data-points;
third, they can be easily altered, for example to generate specific measures for
clusters in networks. The latter example is in particular important, since all of
the current agreement measures overlook the structure of the data, and hence are
not appropriate for comparing clusters over networks, a.k.a. communities. Using
our generalization, we introduced two extensions of the ARI, which incorporate
the structure when comparing communities, i.e. ARIΣdx2 (degree weighted overlap

function) and ARIξx2 (edge counting overlap function). We recommend using these
two extensions when comparing disjoint communities.

The generalized clustering distance, similar to other contingency based mea-
sure, does not readily extend to overlapping cases. Therefore, we presented an
algebraic reformulation for the ARI, based on the difference of co-membership
matrices of the two clusterings, denoted by ARI ′δ. We recommend using ARI ′δ, in
particular when clusters are overlapping; since, first, it is identical to the original
measure if clusters are disjoint; second, it naturally extends to overlapping cases;
third, it is more valid compared to the current alternative overlapping measures,
i.e. it does not have the shortcomings of the overlapping extensions of NMI or
the Omega index. However, one should note that this formulation requires matrix
representations, hence is harder to implement and computationally more expen-
sive. We have provided efficient implementations, using sparse matrices, in the
supplementary materials16.

To also incorporate the structure within this algebraic reformulation, we pro-
posed C⊥ARI

′, and C+ARI
′. The former measures the distance between the trans-

formed structure by each clustering; whereas the latter linearly combines the dis-
tances of each clustering to the structure, assuming the structure itself as another
clustering, i.e. when each edge is considered as a single cluster. We recommend us-
ing C⊥ARI

′ when comparing overlapping communities, since it is more consistent
with the other measures. However, this transformation requires matrix multipli-
cations and hence is computationally expensive; whereas in our implementations,
it is not as scalable as the other measures.
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A Proofs

A.1 Proof of Proposition 1: From the definition of Variation of information we have:

V I(U, V ) = H(U) +H(V )− 2I(U, V ) = 2H(U, V )−H(U)−H(V ) = H(V|U) + H(U|V)

On the other hand, we have:
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(∗) Ej/V arj shows the average/variance of values in the jth column of the contingency table.

(∗∗) The RI is in fact proportional to the average variance of rows/columns values in the contingency

table, which we denote by conditional variance. For other forms of conditional variance for categorical

data see Light and Margolin (1971).

A.2 Proof of Corollary 1: We first show that 0 ≤ Dηϕ(U ||V ) which also results in the
lower bound 0 for Dηϕ(U, V ) since, Dηϕ(U, V ) = Dηϕ(U ||V )+Dηϕ(V ||U). From the superadditivity
of ϕ we have:∑
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A.3 Proof of Identity 1: The proof is elementary, if we write the definition for ϕ =
x log x, we get:
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A.4 Proof of Identity 2: Similar to the previous proof from the definition we derive:
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(∗), (∗∗) same as previous proof.
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A.5 Proof of Identity 3 and 4:
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(∗), (∗∗) same as proof of identity 1.

On the other hand for the NMI, we have:
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A.6 Proof of Identity 5 and 6: First we prove that in general cases we have:

‖UUT − V V T ‖2F = ‖UTU‖2F + ‖V TV ‖2F − 2‖UTV ‖2F

where ‖.‖2F is squared Frob norm. This holds since we have:
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Where the ◦ is element-wise matrix product, a.k.a. hadamard product, and |.| is sum of all
elements in the matrix17. The proof is complete with showing:
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Now, we can prove the identities for the cases of disjoint hard clusters, using the notation
nij = (UTV )ij , we have ‖UTV ‖2F =

∑
ij n

2
ij and:

‖UTU‖2F =
∑
ij

< U.i, U.j >
2
=
∑
ij

(
∑
k

ukiukj)
2 ∗

=
∑
i

(
∑
k

u
2
ki)

2 ∗∗
=
∑
i

(
∑
k

uki)
2 ∗∗∗

=
∑
i

n
2
i.

(∗) with assumption that clusters are disjoint, ukiukj is only non-zero iff i = j

(∗∗) with the assumption that memberships are hard, uki is either 0 or 1, therefore uki = u2
ki

(∗ ∗ ∗) marginals of N give cluster sizes in U and V , i.e. ni. =
∑
j nij =

∑
k uki = |Vi|

Therefore for disjoint hard clusters we get:

‖UUT − V V T ‖2F =
∑
i

n2
i. +

∑
j

n2
.j − 2

∑
ij

n2
ij

The RI normalization assumes that all pairs are in disagreement, i.e. |1n×n| = n2, since
max(UUT ) = 1 and, max(V V T ) = 1. The ARI normalization compares ∆ to the difference
where the two random variable of UUTij and V V Tij are independent, in which case we would

have:
E(UUTijV V

T
ij ) = E((UUT )ij)E((V V T )ij)

which is calculated by:∑
ij((UU

T )ij(V V
T )ij)

n2
=

∑
ij(UU

T )ij

n2

∑
ij(V V

T )ij

n2

Since∆ = ||UUT−V V T ||2F = ||UUT ||2F+||V V T ||2F−2Sum(UUT ◦V V T ), we have ARI = 0 or
normalized distance 1, i.e. agreement no better than chance, when this independence condition
holds, i.e.:

Sum(UUT ◦ V V T ) =
|UUT ||V V T |

n2

17 This equality is also useful in the implementation to improve the scalability.


