Node Embedding

Analysis of complex interconnected data

Common prediction tasks

Link Prediction

Classic example: $z(i, j) = |\mathcal{N}(i) \cap \mathcal{N}(j)|$

 $z(i,j) = f(h_i,h_j)$

e.g. how likely it is for them to become friend?

• Node Classification

What can be a simple predictor?

$$z(i) = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} z(j)$$

 $z(i) = f(h_i)$

e.g. what is the age of a user based on his friends ages?

Instead of an hand-crafted measure, we can learn this

Graph Representation Learning

One of the hottest research topic in the ML community

Node embedding methods derive a vector representation per each node in the graph so that structurally similar nodes have closer vectors

From A Tutorial on Network Embeddings, 2018

Basic Vector Representation for Nodes

• Row in the Adjacency matrix:

What is the common neighbour predictor based on h? $z(i, j) = h_i^{\mathsf{T}} h_i$

• Row in the Laplacian matrix

• k-smallest nontrivi	al eigenvectors of (Graph Laplacian a.k.a	a. Laplacian eigenma	ps (LE)
-----------------------	----------------------	-----------------------	----------------------	---------

- K-means on this gives the Spectral Clustering
- Learn $h: i \mapsto \mathbb{R}^k$ so that
 - distance in the embedded space \Rightarrow link prediction
 - decision boundaries in the embedded space \Rightarrow node classification

· 6

e	Ξ_0	{ (1),	1	${}^{i}_{4}$	V> 5	<n 6</n 	√ 7	8	9	10	11		
0	0	1	1	0	0	0	0	0	0	0	0	1	3	
1	1	0	1	1	0	0	0	0	0	0	0	0	3	
2	1	1	0	0	0	0	0	0	0	0	0	0	2	
3	0	1	0	0	1	1	0	0	0	0	0	0	3	
4	0	0	0	1	0	1	1	0	0	0	0	0	3	
5	0	0	0	1	1	0	0	0	0	0	0	0	2	
6	0	0	0	0	1	0	0	1	1	0	0	0	3	
7	0	0	0	0	0	0	1	0	1	0	0	0	2	
8	0	0	0	0	0	0	1	1	0	0	1	0	3	
9	0	0	0	0	0	0	0	0	0	0	1	1	2	
10	0	0	0	0	0	0	0	0	1	1	0	1	3	5
11	1	0	0	0	0	0	0	0	0	1	1	0	3	
	3	3	2	3	3	2	3	2	3	2	3	3	1	

A

Comp 599: Network Science

Graph Representation Learning

Map each node to a vector: $h : i \in G \mapsto \mathbb{R}^k$

Embed the graph in vector space: $G \rightarrow H^{n \times k}$ {each row gives the embedding of one node}

- distance in the embedded space \Rightarrow link prediction: $h_i^{\top} h_i$
- decision boundaries in the embedded space \Rightarrow node classification

An Encoder-Decoder Perspective

Goal: Similarity in the embedding space (e.g. $h_i^{\top}h_j$) approximates the similarity in the graph

We need to define:

• Encoder gives low dimensional embedding that summarizes the graph position and structure in local neighbourhood

 $ENC(i) = h_i : i \to \mathbb{R}^k$

• **Decoder** reconstructs this neighbourhood given the embedding of the node, or the pairwise similarities

 $S_G(i, j) \approx DEC(h_i, h_j) : \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^+$

What can be a simple similarity measure here? *A*

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

$$\mathcal{L} = \sum_{i,j} l(DEC(h_i, h_j), S_{ij})$$

Minimize using SGD, we directly optimize the embedding of each node

An example embedding

 $DEC(h_i, h_j) = ||h_i - h_j||_2^2$: L2-distance

 $l(DEC(h_i, h_j), S_{ij}) = DEC(h_i, h_j) \cdot S_{ij}$

Intuition: similar nodes with far away embeddings have higher loss

 $S_G(i, j) =>$ if S is according to Laplacian, this gives identical to the solution for spectral clustering, i.e. k smallest eigenvectors of the Laplacian, that is the **Laplacian eigenmaps** (LE) technique

Laplacian Eigenmap

Inner-product methods

 $DEC(h_i, h_j) = h_i^{\mathsf{T}} h_j$: dot product

$$\begin{split} l(DEC(h_i, h_j), S_{ij}) &= (DEC(h_i, h_j) - S_{ij})^2 \implies \mathscr{L} = \|HH^{\top} - S\|_2^2 \\ \text{Intuition: distance in embedding space be} \\ \text{the same as the distance in graph} \end{split}$$

 $S_G(i, j) \implies$ If S = A, the method is the Graph Factorization (GF) approach1 [Ahmed et al., 2013] If *S* is set based on powers of A, *A*, $A^2 \dots A^k$, the method is called GraRep [Cao et al., 2015] If *S* is any classic neighbourhood overlap measure, the method is called HOPE [Ou et al., 2016]

These methods use a deterministic measure of similarity, which is limited and can be expensive to compute, it is it is better to use stochastic measure of neighbourhood overlap

Random walk embeddings

 $l(DEC(h_i, h_j), S_{ij}) = -S_{ij} \log(DEC(h_i, h_j))$: Cross-entropy loss, negative log likelihood that when minimized maximizes the likelihood of the graph

Intuition: nodes have similar embeddings are more likely to co-occur on short random walks over the graph

 $S_G(i, j) = p_{\mathcal{G}, \mathcal{T}}(j | i)$: probability of visiting j on a length \mathcal{T} random walk from i=> stochastic and asymmetric: $S_{ij} \neq S_{ji}$

$$l = -\log(\frac{e^{h_i^{\mathsf{T}}h_j}}{\sum_k e^{h_i^{\mathsf{T}}h_k}})p_{\mathcal{G},\mathcal{T}}(j|i) \Rightarrow \mathcal{L} = -\sum_i \sum_{j \in \mathcal{N}_R(i)} \log(\frac{e^{h_i^{\mathsf{T}}h_j}}{\sum_k e^{h_i^{\mathsf{T}}h_k}})$$

sum over nodes j seen on random walks starting from

This is expensive to compute

6

ENC(i

ENC(i

Embedding space

Random walk embeddings

 $DEC(h_i, h_j) = \frac{e^{h_i^{\mathsf{T}} h_j}}{\sum_k e^{h_i^{\mathsf{T}} h_k}}$: Softmax function

 $l(DEC(h_i, h_j), S_{ij}) = -S_{ij} \log(DEC(h_i, h_j))$: Cross-entropy loss, negative log likelihood that when minimized maximizes the likelihood of the graph

 $S_G(i, j) = p_{\mathcal{G}, \mathcal{T}}(j | i)$: probability of visiting *j* on a length \mathcal{T} random walk from *i*

This is expensive to compute as is:

If approximated with a hierarchical softmax the method is called **DeepWalk** [Perozzi et al., 2014]

If *loss* is approximated with a negative sampling, the method is called **Node2Vec** [Grover and Leskovec, 2016] We can reformulate the loss as:

Explanation for the derivation:
https://arxiv.org/pdf/
1402.3722.pdf
logistic function:
$$\sigma(x) = \frac{1}{1 + e^{-x}} : \mathbb{R} \to (0, 1)$$

Instead of normalizing w.r.t. all nodes, just
normalize against random "negative samples"
More negative samples => more robust
In practice between 5 to 20

A summary of shallow embedding algorithms

	$DEC(h_i, h_j)$	$S_G(i,j)$	$l(DEC(h_i, h_j), S_{ij})$
Method	Decoder	Similarity measure	Loss function
Lap. Eigenmaps Graph Fact. GraRep HOPE	$ \begin{split} \ \mathbf{z}_u - \mathbf{z}_v \ _2^2 \\ \mathbf{z}_u^\top \mathbf{z}_v \\ \mathbf{z}_u^\top \mathbf{z}_v \\ \mathbf{z}_u^\top \mathbf{z}_v \\ \mathbf{z}_u^\top \mathbf{z}_v \end{split} $	general $\mathbf{A}[u, v]$ $\mathbf{A}[u, v],, \mathbf{A}^{k}[u, v]$ general	$DEC(\mathbf{z}_u, \mathbf{z}_v) \cdot \mathbf{S}[u, v]$ $\ DEC(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v]\ _2^2$ $\ DEC(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v]\ _2^2$ $\ DEC(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u, v]\ _2^2$
DeepWalk	$\frac{e^{\mathbf{z}_{u}^{'}\mathbf{z}_{v}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{u}^{\top}\mathbf{z}_{k}}}$	$p_{\mathcal{G}}(v u)$	$-\mathbf{S}[u,v]\log(\mathrm{DEC}(\mathbf{z}_u,\mathbf{z}_v))$
node2vec	$\frac{e^{\mathbf{z}_u^\top \mathbf{z}_v}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_u^\top \mathbf{z}_k}}$	$p_{\mathcal{G}}(v u)$ (biased)	$-\mathbf{S}[u,v]\log(\operatorname{DEC}(\mathbf{z}_u,\mathbf{z}_v))$

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Deepwalk

Algorithm 1 DeepWalk(G, w, d, γ, t) Input: network $G(V, E)$ window size w embedding size d walks per vertex γ walk length t Output: matrix of vertex representations $\Phi \in \mathbb{R}^{ V \times d}$ 1: Initialization: Sample Φ from $\mathcal{U}^{ V \times d}$ 2: Build a binary Tree T from V	1 Sampling random walks	2 Training skip-gram model s of DeepWalk approach
3: for $i = 0$ to γ do 4: $\mathcal{O} = \text{Shuffle}(V)$ 5: for each $v_i \in \mathcal{O}$ do 6: $\mathcal{W}_{v_i} = RandomWalk(G, v_i, t)$ 7: $\text{SkipGram}(\Phi, \mathcal{W}_{v_i}, w)$ 8: end for	Algorithm 2 SkipGram(Φ, W_{v_i}, w) 1: for each $v_j \in W_{v_i}$ do 2: for each $u_k \in W_{v_i}[j - w : j + w]$ do 3: $J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))$ 4: $\Phi = \Phi - \alpha * \frac{\partial J}{\partial \Phi}$ 5: end for	 SkipGram is a language model that maximizes the co- occurrence probability among the words that appear within a window, w, in a sentence
9: end for	6: end for	_

- 32 to 64 random walks from each node of a length of about 40 steps
- Random walks as sentences, maximize probability of predicting neighbour nodes

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007 https://arxiv.org/pdf/1403.6652.pdf

کی ا

Node2vec

Similar to Deepwalk but interpolates between random walks that discover larger neighborhood (Q), and those that stav local (P)

Two parameters:

- Return parameter *p*: Return back to the previous node
- In-out parameter *q*: Moving outwards (DFS) vs. inwards (BFS): Intuitively, *q* is the "ratio" of BFS vs. DFS

Node2Vec Different ways to embed

Embedding so that nodes

- in the same cluster are placed close together (DFS)
- with similar roles are placed close together (BFS)

https://arxiv.org/pdf/1607.00653.pdf

° (_____

Limitations of Shallow Embeddings

No parameter sharing \Rightarrow less scalable

- encoder directly optimizes a unique embedding vector for each node
- the number of parameters grows with size of graph

Ignores features or attributes & labels

Inherently transductive \Rightarrow can not process unseen nodes

Read more:

<u>A Tutorial on Network Embeddings</u>, 2018 & <u>Representation Learning on Graphs</u>, 2017 & <u>GLR book's chapter on node embedding</u>, 2020

From Shallow Embeddings to Graph Neural Nets

- No parameter sharing \Rightarrow less scalable
- Ignores features or attributes
- Inherently transductive \Rightarrow can not process unseen nodes

optimized a unique embedding vector for each node \Rightarrow more complex encoder models, graph neural networks which work based on feature propagation

- Number of parameters doesn't grow with graph size but feature dimension
- Naturally incorporates node features
- Inherently inductive \Rightarrow infer embedding for unseen nodes

Watch https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

Resources: Libraries and Datasets

github.com/graphdeeplearning/benchmarking-gnns

based on https://petar-v.com/talks/GNN-Wednesday.pdf

