
Comp 599: Network Science, Fall 2022

Node Embedding
Analysis of complex interconnected data

Comp 599: Network Science 2

● Link Prediction

● Node Classification

Common prediction tasks

?

?
z(i, j)

z(i)

i

j

i

z(i, j) = |𝒩(i) ∩ 𝒩(j) |
Classic example:

What can be a simple predictor?

z(i) =
1

|𝒩(i) | ∑
j∈𝒩(i)

z(j)

24

25

22

Instead of an hand-crafted measure, we can learn this

= f(hi)

= f(hi, hj)
e.g. how likely it is for
them to become friend?

e.g. what is the age of a user
based on his friends ages?

Comp 599: Network Science 3

Graph Representation Learning

One of the hottest research topic in the ML community

Node embedding methods derive a vector
representation per each node in the graph so that
structurally similar nodes have closer vectors

From A Tutorial on Network Embeddings, 2018

h : i ↦ ℝk

https://arxiv.org/pdf/1808.02590.pdf
https://arxiv.org/pdf/1808.02590.pdf

Comp 599: Network Science 4

• Row in the Adjacency matrix:

What is the common neighbour predictor based on h?

• Row in the Laplacian matrix

• k-smallest nontrivial eigenvectors of Graph Laplacian a.k.a. Laplacian eigenmaps (LE)
- K-means on this gives the Spectral Clustering

• Learn so that
- distance in the embedded space ⇒ link prediction
- decision boundaries in the embedded space ⇒ node classification

h10 = [0 0 0 0 0 0 0 0 1 1 0 1]⊤

z(i, j) = h⊤
i hj

h : i ↦ ℝk

Basic Vector Representation for Nodes
0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

A ∈ {0,1}N×N

Comp 599: Network Science 5

Map each node to a vector:
Embed the graph in vector space: {each row gives the embedding of one node}

- distance in the embedded space ⇒ link prediction:
- decision boundaries in the embedded space ⇒ node classification

h⊤
i hj

Graph Representation Learning

See A Tutorial on Network Embeddings, 2018

h : i ∈ G ↦ ℝk

G → Hn×k

∑
(i, j)∈E

log σ(h⊤
i hj) + ∑

(i, j)∉E

log(1 − σ(h⊤
i hj))

This can be trained unsupervised, e.g. based on cross-entropy loss
 puts connected nodes close-by, to preserves the edge structure:

σ (x) =
1

1 + e−x : ℝ → (0,1)logistic/squashing/activation function:
Gives a single probability

Links non-Links

https://arxiv.org/pdf/1808.02590.pdf
https://arxiv.org/pdf/1808.02590.pdf

Comp 599: Network Science 6

Goal: Similarity in the embedding space (e.g.)
approximates the similarity in the graph

We need to define:

• Encoder gives low dimensional embedding that
summarizes the graph position and structure in local
neighbourhood

• Decoder reconstructs this neighbourhood given the
embedding of the node, or the pairwise similarities

h⊤
i hj

An Encoder-Decoder Perspective

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

ENC(i) = hi : i → ℝk

SG(i, j) ≈ DEC(hi, hj) : ℝk × ℝk → ℝ+

What can be a simple similarity measure here? A

ℒ = ∑
i, j

l(DEC(hi, hj), Sij)

Minimize using SGD, we directly optimize
the embedding of each node

ENC(j)

ENC(i)

hj

hi

Embedding space

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 7

An example embedding

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

=> if S is according to Laplacian, this gives identical to the solution for spectral
clustering, i.e. k smallest eigenvectors of the Laplacian, that is the Laplacian eigenmaps
(LE) technique

: L2-distance

Intuition: similar nodes with far away
embeddings have higher loss

DEC(hi, hj) = ∥hi − hj∥2
2

l(DEC(hi, hj), Sij) = DEC(hi, hj) . Sij

SG(i, j)

Laplacian Eigenmap

ENC(j)

ENC(i)

hj

hi

Embedding space

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 8

Inner-product methods

=>

: dot product

Intuition: distance in embedding space be
the same as the distance in graph

DEC(hi, hj) = h⊤
i hj

l(DEC(hi, hj), Sij) = (DEC(hi, hj) − Sij)2

SG(i, j)

ENC(j)

ENC(i)

hj

hi

Embedding space

If , the method is the Graph Factorization (GF) approach1 [Ahmed et al., 2013]

If is set based on powers of A, , the method is called GraRep [Cao et al., 2015]

If is any classic neighbourhood overlap measure, the method is called HOPE [Ou et al., 2016]

S = A
S A, A2…Ak

S

⇒ ℒ = ∥HH⊤ − S∥2
2

These methods use a deterministic measure of similarity, which is limited and can be expensive
to compute, it is it is better to use stochastic measure of neighbourhood overlap

Comp 599: Network Science 9

Random walk embeddings

Intuition: nodes have similar embeddings are more likely to co-occur on short random
walks over the graph

DEC(hi, hj) =
eh⊤

i hj

∑k eh⊤
i hk

l(DEC(hi, hj), Sij) = − Sij log(DEC(hi, hj))

SG(i, j) = p𝒢,𝒯(j | i)

E NC (j)

E NC (i)

hj

hi

Embedding space

: Cross-entropy loss, negative log likelihood that when
minimized maximizes the likelihood of the graph

: probability of visiting on a length random walk from j 𝒯 i

: Softmax function: , probability simplex

ℝk → Δk
pk ∈ Δk ⇒ ∑

k
pk = 1

 l = − log(
eh⊤

i hj

∑k eh⊤
i hk

)p𝒢,𝒯(j | i) ⇒ ℒ = − ∑
i

∑
j∈𝒩R(i)

log(
eh⊤

i hj

∑k eh⊤
i hk

)

sum over nodes j seen on
random walks starting from i

This is expensive to compute

: probability of visiting on a length random walk from
=> stochastic and asymmetric:

j 𝒯 i
Sij ≠ Sji

Comp 599: Network Science 10

Random walk embeddings

DEC(hi, hj) =
eh⊤

i hj

∑k eh⊤
i hk

l(DEC(hi, hj), Sij) = − Sij log(DEC(hi, hj))

SG(i, j) = p𝒢,𝒯(j | i)

E NC (j)

E NC (i)

hj

hi

Embedding space

If approximated with a hierarchical softmax the method is called DeepWalk [Perozzi et al., 2014]

If is approximated with a negative sampling, the method is called Node2Vec [Grover and Leskovec, 2016]

We can reformulate the loss as:

loss

: Cross-entropy loss, negative log likelihood that when
minimized maximizes the likelihood of the graph

: probability of visiting on a length random walk from j 𝒯 i

This is expensive to compute as is:

: Softmax function

l ≈ − log(σ(h⊤
i hj)) − ∑

k

log(σ(h⊤
i hk))Explanation for the derivation:

https://arxiv.org/pdf/
1402.3722.pdf

Instead of normalizing w.r.t. all nodes, just
normalize against random “negative samples”

More negative samples => more robust
In practice between 5 to 20

σ (x) =
1

1 + e−x : ℝ → (0,1)logistic function:

https://arxiv.org/pdf/1402.3722.pdf
https://arxiv.org/pdf/1402.3722.pdf

Comp 599: Network Science 11

A summary of shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

DEC(hi, hj) SG(i, j) l(DEC(hi, hj), Sij)

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 12

● 32 to 64 random walks from each node of a length of about 40 steps
● Random walks as sentences, maximize probability of predicting neighbour nodes

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf

Deepwalk

SkipGram is a language model that
maximizes the co- occurrence probability
among the words that appear within a
window, w, in a sentence

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf

Comp 599: Network Science 13

Similar to Deepwalk but interpolates between random walks that discover larger
neighborhood (Q), and those that stay local (P)

Node2vec

Two parameters:
▪ Return parameter 𝒑: Return back to the previous node
▪ In-out parameter 𝒒: Moving outwards (DFS) vs. inwards (BFS): Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

unnormalized probabilities:
{1, 1/p, 1/q, 1/q}

Comp 599: Network Science 14

Embedding so that nodes
● in the same cluster are placed close together (DFS)
● with similar roles are placed close together (BFS)

Node2Vec Different ways to embed

https://arxiv.org/pdf/1607.00653.pdf

https://arxiv.org/pdf/1607.00653.pdf

Comp 599: Network Science 15

No parameter sharing ⇒ less scalable
• encoder directly optimizes a unique embedding vector for each node
• the number of parameters grows with size of graph

Ignores features or attributes & labels

Inherently transductive ⇒ can not process unseen nodes

Limitations of Shallow Embeddings

Read more:
 A Tutorial on Network Embeddings, 2018 &
Representation Learning on Graphs, 2017 &
GLR book’s chapter on node embedding, 2020

https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 16

● No parameter sharing ⇒ less scalable
● Ignores features or attributes
● Inherently transductive ⇒ can not process unseen nodes

optimized a unique embedding vector for each node ⇒ more complex encoder models,
graph neural networks which work based on feature propagation

● Number of parameters doesn't grow with graph size but feature dimension
● Naturally incorporates node features
● Inherently inductive ⇒ infer embedding for unseen nodes

From Shallow Embeddings to Graph Neural Nets

Watch https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

Comp 599: Network Science 17

Resources: Libraries and Datasets

github.com/graphdeeplearning/benchmarking-gnns

Graphlearning.io

Ogb.stanford.edu

https://pytorch-geometric.readthedocs.
io/en/latest/modules/datasets.html

based on https://petar-v.com/talks/GNN-Wednesday.pdf

https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/07_leaderboards.md
https://chrsmrrs.github.io/datasets/
http://ogb.stanford.edu
https://pytorch-geometric.readthedocs.
https://pytorch-geometric.readthedocs.
https://petar-v.com/talks/GNN-Wednesday.pdf

Comp 599: Network Science 18

Graph Likelihood E NC (j)

E NC (i)

hj

hi

Embedding space

We want to maximize the graph likelihood = Ma x ∏
(i, j)∈E

p(i, j)sij ∏
(i, j)∉E

(1 − p(i, j))
Links be
likely

non-Links be
not likelyThis is similar to minimizing the

negative log likelihood
Links non-Links

= Min − ∑
(i, j)∈E

log(p(i, j))sij − ∑
(i, j)∉E

log(1 − p(i, j))

h* = argminh − ∑
(i, j)∈E

log σ(h⊤
i hj) − ∑

(i, j)∉E

log(1 − σ(h⊤
i hj))

Links non-Links

With S = A, and
 we getp(i, j) = σ(h⊤

i hj)

σ (x) =
1

1 + e−x : ℝ → (0,1)
logistic/squashing/activation
function: gives a single
probability

h* = argminh − ∑
(i, j)∈E

log σ(h⊤
i hj) + ∑

(i, j)∉E

log(σ(h⊤
i hj))

Links non-Links

