
Comp 599: Network Science, Fall 2022

Node Embedding
Analysis of complex interconnected data
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● Link Prediction 

● Node Classification 

Common prediction tasks

?

?
z(i, j)

z(i)
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z(i, j) = |𝒩(i) ∩ 𝒩( j) |
Classic example:

What can be a simple predictor? 

z(i) =
1

|𝒩(i) | ∑
j∈𝒩(i)

z( j)

24
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Instead of an hand-crafted measure, we can learn this

= f(hi)

= f(hi, hj)
e.g. how likely it is for 
them to become friend?

e.g. what is the age of a user 
based on his friends ages?
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Graph Representation Learning

One of the hottest research topic in the ML community

Node embedding methods derive a vector 
representation per each node in the graph so that 
structurally similar nodes have closer vectors

From A Tutorial on Network Embeddings, 2018

h : i ↦ ℝk

https://arxiv.org/pdf/1808.02590.pdf
https://arxiv.org/pdf/1808.02590.pdf
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• Row in the Adjacency matrix:

What is the common neighbour predictor based on h?

• Row in the Laplacian matrix

• k-smallest nontrivial eigenvectors of Graph Laplacian a.k.a. Laplacian eigenmaps (LE)
- K-means on this gives the Spectral Clustering

• Learn  so that 
- distance in the embedded space ⇒ link prediction
- decision boundaries in the embedded space ⇒ node classification

h10 = [0 0 0 0 0 0 0 0 1 1 0 1]⊤

z(i, j) = h⊤
i hj

h : i ↦ ℝk

Basic Vector Representation for Nodes
0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 0 0 0 0 0 0 1 3
1 1 0 1 1 0 0 0 0 0 0 0 0 3
2 1 1 0 0 0 0 0 0 0 0 0 0 2
3 0 1 0 0 1 1 0 0 0 0 0 0 3
4 0 0 0 1 0 1 1 0 0 0 0 0 3
5 0 0 0 1 1 0 0 0 0 0 0 0 2
6 0 0 0 0 1 0 0 1 1 0 0 0 3
7 0 0 0 0 0 0 1 0 1 0 0 0 2
8 0 0 0 0 0 0 1 1 0 0 1 0 3
9 0 0 0 0 0 0 0 0 0 0 1 1 2
10 0 0 0 0 0 0 0 0 1 1 0 1 3
11 1 0 0 0 0 0 0 0 0 1 1 0 3

3 3 2 3 3 2 3 2 3 2 3 3

A ∈ {0,1}N×N
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Map each node to a vector: 
Embed the graph in vector space:                         {each row gives the embedding of one node}

- distance in the embedded space ⇒ link prediction: 
- decision boundaries in the embedded space ⇒ node classification

h⊤
i hj

Graph Representation Learning

See A Tutorial on Network Embeddings, 2018

h : i ∈ G ↦ ℝk

G → Hn×k

∑
(i, j)∈E

log σ(h⊤
i hj) + ∑

(i, j)∉E

log(1 − σ(h⊤
i hj))

This can be trained unsupervised, e.g. based on cross-entropy loss
 puts connected nodes close-by, to preserves the edge structure:

σ (x) =
1

1 + e−x : ℝ → (0,1)logistic/squashing/activation function:
Gives a single probability

Links non-Links

https://arxiv.org/pdf/1808.02590.pdf
https://arxiv.org/pdf/1808.02590.pdf


Comp 599: Network Science 6

Goal: Similarity in the embedding space (e.g. ) 
approximates the similarity in the graph

We need to define: 

• Encoder gives low dimensional embedding that 
summarizes the graph position and structure in local 
neighbourhood

• Decoder reconstructs this neighbourhood given the 
embedding of the node, or the pairwise similarities 

h⊤
i hj

An Encoder-Decoder Perspective

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

ENC(i) = hi : i → ℝk

SG(i, j ) ≈ DEC(hi, hj) : ℝk × ℝk → ℝ+

What can be a simple similarity measure here? A

ℒ = ∑
i, j

l(DEC(hi, hj), Sij)

Minimize using SGD, we directly optimize 
the embedding of each node

ENC( j )

ENC(i)

hj

hi

Embedding space

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf
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An example embedding

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

=> if S is according to Laplacian, this gives identical to the solution for spectral 
clustering, i.e. k smallest eigenvectors of the Laplacian, that is the Laplacian eigenmaps 
(LE) technique

: L2-distance

Intuition: similar nodes with far away 
embeddings have higher loss

DEC(hi, hj) = ∥hi − hj∥2
2

l(DEC(hi, hj), Sij) = DEC(hi, hj) . Sij

SG(i, j )

Laplacian Eigenmap

ENC( j )

ENC(i)

hj

hi

Embedding space

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf
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Inner-product methods

=>

: dot product

Intuition: distance in embedding space be 
the same as the distance in graph

DEC(hi, hj) = h⊤
i hj

l(DEC(hi, hj), Sij) = (DEC(hi, hj) − Sij)2

SG(i, j )

ENC( j )

ENC(i)

hj

hi

Embedding space

If , the method is the Graph Factorization (GF) approach1 [Ahmed et al., 2013]

If  is set based on powers of A, , the method is called GraRep [Cao et al., 2015]

If  is any classic neighbourhood overlap measure, the method is called HOPE [Ou et al., 2016]

S = A
S A, A2…Ak

S

⇒ ℒ = ∥HH⊤ − S∥2
2

These methods use a deterministic measure of similarity, which is limited and can be expensive 
to compute, it is  it is better to use stochastic measure of neighbourhood overlap
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Random walk embeddings

Intuition:  nodes have similar embeddings are more likely to co-occur on short random 
walks over the graph

DEC(hi, hj) =
eh⊤

i hj

∑k eh⊤
i hk

l(DEC(hi, hj), Sij) = − Sij log(DEC(hi, hj))

SG(i, j ) = p𝒢,𝒯( j | i)

E NC ( j )

E NC (i )

hj

hi

Embedding space

: Cross-entropy loss, negative log likelihood that when 
minimized maximizes the likelihood of the graph

: probability of visiting  on a length  random walk from j 𝒯 i

: Softmax function:  ,  probability simplex 
                                                         

ℝk → Δk
pk ∈ Δk ⇒ ∑

k
pk = 1

   l = − log(
eh⊤

i hj

∑k eh⊤
i hk

)p𝒢,𝒯( j | i) ⇒ ℒ = − ∑
i

∑
j∈𝒩R(i)

log(
eh⊤

i hj

∑k eh⊤
i hk

)

sum over nodes j seen on 
random walks starting from i

This is expensive to compute

: probability of visiting  on a length  random walk from 
=> stochastic and asymmetric: 

j 𝒯 i
Sij ≠ Sji
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Random walk embeddings

DEC(hi, hj) =
eh⊤

i hj

∑k eh⊤
i hk

l(DEC(hi, hj), Sij) = − Sij log(DEC(hi, hj))

SG(i, j ) = p𝒢,𝒯( j | i)

E NC ( j )

E NC (i )

hj

hi

Embedding space

If approximated with a hierarchical softmax the method is called DeepWalk [Perozzi et al., 2014]

If  is approximated with a negative sampling, the method is called Node2Vec [Grover and Leskovec, 2016]

We can reformulate the loss as:

loss

: Cross-entropy loss, negative log likelihood that when 
minimized maximizes the likelihood of the graph

: probability of visiting  on a length  random walk from j 𝒯 i

This is expensive to compute as is:

: Softmax function

l ≈ − log(σ(h⊤
i hj)) − ∑

k

log(σ(h⊤
i hk))Explanation for the derivation: 

https://arxiv.org/pdf/
1402.3722.pdf

Instead of normalizing w.r.t. all nodes, just 
normalize against random “negative samples”

More negative samples => more robust
In practice between 5 to 20

σ (x) =
1

1 + e−x : ℝ → (0,1)logistic function:

https://arxiv.org/pdf/1402.3722.pdf
https://arxiv.org/pdf/1402.3722.pdf


Comp 599: Network Science 11

A summary of shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

DEC(hi, hj) SG(i, j ) l(DEC(hi, hj), Sij)

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf


Comp 599: Network Science 12

● 32 to 64 random walks from each node of a length of about 40 steps
● Random walks as sentences, maximize probability of predicting neighbour nodes 

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf

Deepwalk

SkipGram is a language model that 
maximizes the co- occurrence probability 
among the words that appear within a 
window, w, in a sentence

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf
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Similar to Deepwalk but interpolates between random walks that discover larger 
neighborhood (Q), and those that stay local (P)

Node2vec

Two parameters:
▪ Return parameter 𝒑: Return back to the previous node
▪ In-out parameter 𝒒: Moving outwards (DFS) vs. inwards (BFS): Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

unnormalized probabilities:
{1, 1/p, 1/q, 1/q}
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Embedding so that nodes 
● in the same cluster are placed close together (DFS)
● with similar roles are placed close together (BFS)

Node2Vec Different ways to embed

https://arxiv.org/pdf/1607.00653.pdf

https://arxiv.org/pdf/1607.00653.pdf
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No parameter sharing ⇒ less scalable
• encoder directly optimizes a unique embedding vector for each node 
• the number of parameters grows with size of graph

Ignores features or attributes & labels

Inherently transductive ⇒ can not process unseen nodes

Limitations of Shallow Embeddings

Read more: 
 A Tutorial on Network Embeddings, 2018 &
Representation Learning on Graphs, 2017 &
GLR book’s chapter on node embedding, 2020

https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf
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● No parameter sharing ⇒ less scalable
● Ignores features or attributes
● Inherently transductive ⇒ can not process unseen nodes

optimized a unique embedding vector for each node ⇒ more complex encoder models, 
graph neural networks which work based on feature propagation

● Number of parameters doesn't grow with graph size but feature dimension
● Naturally incorporates node features
● Inherently inductive ⇒ infer embedding for unseen nodes

From Shallow Embeddings to Graph Neural Nets

Watch https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4


Comp 599: Network Science 17

Resources: Libraries and Datasets

github.com/graphdeeplearning/benchmarking-gnns

Graphlearning.io

Ogb.stanford.edu

https://pytorch-geometric.readthedocs. 
io/en/latest/modules/datasets.html

based on https://petar-v.com/talks/GNN-Wednesday.pdf

https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/07_leaderboards.md
https://chrsmrrs.github.io/datasets/
http://ogb.stanford.edu
https://pytorch-geometric.readthedocs.
https://pytorch-geometric.readthedocs.
https://petar-v.com/talks/GNN-Wednesday.pdf
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Graph Likelihood E NC ( j )

E NC (i )

hj

hi

Embedding space

We want to maximize the graph likelihood = Ma x ∏
(i, j)∈E

p(i, j)sij ∏
(i, j)∉E

(1 − p(i, j))
Links be 
likely

non-Links be 
not likelyThis is similar to minimizing the 

negative log likelihood 
Links non-Links

= Min − ∑
(i, j)∈E

log(p(i, j))sij − ∑
(i, j)∉E

log(1 − p(i, j))

h* = argminh − ∑
(i, j)∈E

log σ(h⊤
i hj) − ∑

(i, j)∉E

log(1 − σ(h⊤
i hj))

Links non-Links

With S = A, and 
 we getp(i, j) = σ(h⊤

i hj)

σ (x) =
1

1 + e−x : ℝ → (0,1)
logistic/squashing/activation 
function: gives a single 
probability

h* = argminh − ∑
(i, j)∈E

log σ(h⊤
i hj) + ∑

(i, j)∉E

log(σ(h⊤
i hj))

Links non-Links


