Node Embedding

Analysis of complex interconnected data

Comp 599: Network Science, Fall 2022



Common prediction tasks

e Link Prediction
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Classic example:
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e Node Classification
What can be a simple predictor? @‘@ Z(l ) — f (h )
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Instead of an hand-crafted measure, we can learn this
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Graph Representation Learning

One of the hottest research topic in the ML community
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Node embedding methods derive a vector
representation per each node in the graph so that

structurally similar nodes have closer vectors
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https://arxiv.org/pdf/1808.02590.pdf
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Basic Vector Representation for Nodes
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e Row in the Adjacency matrix:
ho=[0 0000000110 1]
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What is the common neighbour predictor based on h?
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e Row in the Laplacian matrix

* k-smallest nontrivial eigenvectors of Graph Laplacian a.k.a. Laplacian eigenmaps (LE)

- K-means on this gives the Spectral Clustering

e Learn /1 : i = RFso that

- distance in the embedded space = link prediction

- decision boundaries in the embedded space = node classification
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Graph Representation Learning
Map each node to a vector: h:ie€ G — RF

Embed the graph 1n vector Space: G -> H nxk {each row gives the embedding of one node}

- distance in the embedded space = link prediction: hl.Thj

- decision boundaries in the embedded space = node classification
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® e (a) Output: DeepWalk (e) Output: LE (f) Output: SVD

This can be trained unsupervised, e.g. based on cross-entropy loss Z log o(hT h) + Z log(1 — (kT 7))

puts connected nodes close-by, to preserves the edge structure: DEE | i (i.))2E
See A Tutorial on Network Embeddines, 2018 logistic/squashing/activation function: ¢ (x) = -: R — (0,1)
Gives a single probability 1 4+e*
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An Encoder-Decoder Perspective ENCG) .
°
Goal: Similarity in the embedding space (e.g. hiThj) 0
approximates the similarity in the graph ENC(j)
We need to define: Embedding space
* Encoder gives low dimensional embedding that
summarizes the graph position and structure in local
neighbourhood )
ENC(i)=h;:i— R
% = Y (DEC(h;, hy). S;)
* Decoder reconstructs this neighbourhood given the ij
embedding of the node, or the pairwise similarities Minimize using SGD, we directly optimize
Sg(i. j) ~ DEC(hy, hy) : Rf x R¥ — R+ the embedding of each node

What can be a simple similarity measure here? A

https:/ /www.cs.mcgill.ca/~wlh /grl book/files/GRL_Book-Chapter_3-Node Embeddings.pdf
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

An example embedding NG
h;
°
o
DEC(h;, hj) = ||h; — hj”% : L2-distance ENC(j)
Embedding space

I(DEC(h;, hy), ;) = DEC(hy, ) . S;

Intuition: similar nodes with far away

embeddings have higher loss

Sg(i,j) =>if Sis according to Laplacian, this gives identical to the solution for spectral
clustering, i.e. k smallest eigenvectors of the Laplacian, that is the Laplacian eigenmaps
(LE) technique

Laplacian Eigenmap

https: / /www.cs.mcgill.ca/~wlh/grl book/files/ GRL Book-Chapter 3-Node Embeddings.pdf
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Inner-product methods ENC(D)
h;
o
o
DEC(h;, h)) = h'h; : dot product ENC())
Embedding space

I(DEC(h;, hy), S;) = (DEC(h;, hy) — S;)* = Z = |HH' - S||3

Intuition: distance in embedding space be

the same as the distance in graph

Sc(i.J) => 1 § = A, the method is the Graph Factorization (GF) approachl [Ahmed et al., 2013]
If S is set based on powers of A, A, A?...A* the method is called GraRep [Cao et al., 2015]
If S is any classic neighbourhood overlap measure, the method is called HOPE [Ou et al., 2016]

These methods use a deterministic measure of similarity, which is limited and can be expensive
to compute, it is it is better to use stochastic measure of neighbourhood overlap
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ENC(i)

b ®J
Random walk embeddings Fvea)
@ Embedding space
hh; 2
DEC(h;, h;) = N i : Softmax function: R¥ — A, probability simplex &
Z e Tk pkEAk=>Zpk—1

I(DEC(h;, h)),S;;) = — S;;log(DEC(h;, h)))  : Cross-entropy loss, negative log likelihood that when
minimized maximizes the likelihood of the graph

Intuition: nodes have similar embeddings are more likely to co-occur on short random
walks over the graph

Sc(i,J) = pg g(jli) : probability of visiting j on a length 9 random walk from i
=> stochastic and asymmetric: §;; # S;

;
ohihy i

Weg(li)=>ZL==3 log(-—m)

Z ehTh
i JENR()

sum over nodes] seen on
random walks starting from i

| = —log(—————

This is expensive to compute
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ENC(i) .
| e
Random walk embeddings iveo|
hl,Thj Embedding space
DEC(h;, hy) = W : Softmax function

I((DEC(h;, hy), S;j) = — S;;10g(DEC(h;, b)) : Cross-entropy loss, negative log likelihood that when
minimized maximizes the likelihood of the graph

Sc(i, j) = pz.5(jli) : probability of visiting j on a length I random walk from i

This is expensive to compute as is:

If approximated with a hierarchical softmax the method is called DeepWalk [Perozzi et al., 2014]

If loss is approximated with a negative sampling, the method is called Node2Vec [Grover and Leskovec, 2016]

We can reformulate the loss as:

https:/ /arxiv.org / pdf

Explanation for the derivation: l ~ — 1 og ( c (thh])) _ Z 10 g( c (th hk))
1402.3722.pdf k
‘R = (0,1) Instead of normalizing w.r.t. all nodes, just More negative samples => more robust
e normalize against random “negative samples” In practice between 5 to 20

logistic function: ¢ (x) =



https://arxiv.org/pdf/1402.3722.pdf
https://arxiv.org/pdf/1402.3722.pdf

A summary of shallow embedding algorithms

DEC(h;, hy) Sc(is j) I(DEC(h;, hy), )
Method Decoder Similarity measure Loss function
Lap. Eigenmaps ||z, — 2,3 general DEC(Zy, Zy ) - S{u, v]
Graph Fact. z, 7, Alu,v] |IDEC(2Zy, 2,) — S[u, v]||3
GraRep z, Z, Alu,v], ..., AF[u,v]  ||DEC(Zy,2,) — S[u, v]||3
HOPE z, 7, general |IDEC(2Zy, 2,) — S[u, v]||3
szU
DeepWalk - pg (v|u) —S[u, v]log(DEC(2y, Z,))
ZkevTe u sk

node2vec eTu pg(v|u) (biased)  —Slu,v]|log(DEC(Zy,2y))

chv e®u %k

https:/ /www.cs.mcgill.ca/~wlh /grl book/files/GRL_Book-Chapter_3-Node Embeddings.pdf
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Deepwalk

> »( »()
Qs 7O
Algorithm 1 DeepWalk(G, w, d, 7, t) 1 N9 00 2 . 8 & b 3
Input: network G(V, E) —> EE— (}(&(\//‘Q _— o
window size w Sampllng O)O)Q)O Trammg d/ _/V@ Computing OOO
embedding size d random skip-gram embeddings
walks per vertex 7y walks m model

walk length ¢
Output: matrix of vertex representations ® € RIVI*d
1: Initialization: Sample ® from V%4
2: Build a binary Tree T from V'

Phases of DeepWalk approach

3: for i =0 to y do Algorithm 2 SkipGram(®, W,,, w)
= Shuffl ; . .
; f > b g(vgg d L+ for each v; € Wy, do. _ SkipGram is a language model that
oo each e 2 for each ux € Wy [j —w: j +u] do maximizes the co- occurrence probability
. Yo = Random 7 alk(G,vit) > 7(2) = ~logPr(u | 2(vy)) among the words that appear within a
7: SkipGram(®, W,,, w) 4: =0 —ax2l nong ) pp
8: end for 5:  end for window, w, in a sentence
9: end for 6: end for

32 to 64 random walks from each node of a length of about 40 steps
e Random walks as sentences, maximize probability of predicting neighbour nodes

https: / / towardsdatascience.com / graph-embeddings-the-summary-cc6075aba007
https: / /arxiv.org /pdf/1403.6652.pdf
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Node2vec

Similar to Deepwalk but interpolates between random walks that discover larger

neighborhood (Q), and those that stav local (P)
A

unnormalized probabilities:

{1,1/p,1/q,1/q}

BFS-like walk: Low value of p
Two parameters: DFS-like walk: Low value of ¢

= Return parameter p: Return back to the previous node

= In-out parameter g: Moving outwards (DFS) vs. inwards (BFS): Intuitively, ¢ is the “ratio” of BFS vs. DFS

=
Comp 599: Network Science 13 E



Node2Vec Different ways to embed

Embedding so that nodes

e in the same cluster are placed close together (DFS)
e with similar roles are placed close together (BFS)

Community structure Structural equivalence / roles

https:/ /arxiv.org /pdf/1607.00653.pdf
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Limitations of Shallow Embeddings

No parameter sharing = less scalable

* encoder directly optimizes a unique embedding vector for each node

* the number of parameters grows with size of graph

Ignores features or attributes & labels

Inherently transductive = can not process unseen nodes

Read more:

A Tutorial on Network Embeddings, 2018 &
Representation Learning on Graphs, 2017 &
GLR book’s chapter on node embedding, 2020

Comp 599: Network Science
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https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

From Shallow Embeddings to Graph Neural Nets

e No parameter sharing = less scalable
e Ignores features or attributes
e Inherently transductive = can not process unseen nodes

optimized a unique embedding vector for each node = more complex encoder models,
graph neural networks which work based on feature propagation

f(X, A)

e Number of parameters doesn't grow with graph size but feature dimension
e Naturally incorporates node features
e Inherently inductive = infer embedding for unseen nodes

Watch https: / /www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4
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Resources: Libraries and Datasets

GB  Oem T

Pestanfordedy . PyTOrCh ﬁ Spektral

geometric

github.com/rustyls/pytorch geometric graphneural .network

=1 ) —-u'
/', TUDataset D |
- (oL)
Graphlearning.io -
dgl.ai i
github.com/deepmind/graph nets github.com/deepmind/jraph
https:/ /pytorch-geometric.readthedocs.
io/en/latest/modules/datasets.html
github.com / graphdeeplearning /benchmarking-gnns based on https: / / petar-v.com / talks/ GNN-Wednesday.pdf
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https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/07_leaderboards.md
https://chrsmrrs.github.io/datasets/
http://ogb.stanford.edu
https://pytorch-geometric.readthedocs.
https://pytorch-geometric.readthedocs.
https://petar-v.com/talks/GNN-Wednesday.pdf

ENC(i)
et
. . o
Graph Likelihood iveg|
Embedding space
We want to maximize the graph likelihood = Ma x H p(i, j)%i H (1 -p@,J))
(i./)€E Linksbe (i, j)gE
This is similar to minimizing the likely
negative log likelihood = Min — Z log(p(i, j))s; — Z log(1 — p(i, j))
(i.))EE Links ) RE
With S = Af}j‘?; B = argmin, — Y. logo(hTh) — Y log(l - o(iThy)
h* = argmin,— ) logo(hTh)+ ) log(a(hh)) 00 = 7 R~ O
(.)EE Links (i./)EE oction; ahves s Sngie 0"
probability

Comp 599: Network Science

18



