
Comp 599: Network Science, Fall 2022

Modules
Analysis of complex interconnected data

Slides mostly based on 
newman’s book
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Quick Recap of Centrality Measures 
● Degree Centrality

○ count the number of neighbours, ignores their importance

● Eigenvalue Centrality 
○ consider importance but gives zero to nodes not in scc or its out 

component, in extreme case of an acyclic networks, e.g. citation 
networks, all nodes get zero score

● Katz Centrality 
○ avoid zeros by giving everyone a basic importance

● PageRank 
○ divide importance on how many connections it is passed over to

● HITS
○ consider two types of importance, hubs and authorities 

● Closeness centrality 
○ average how close you are to the rest 

● Betweenness centrality
○ count what fraction of shortest paths pass through you

xi = α ∑
j∈N(i)

xj , α =
1

λ*(A)

xi = ∑
j∈N(i)

1

xi = α ∑
j∈N(i)

xj + 1 , α <
1

λ*(A)

xi = α ∑
j∈N(i)

xj

dj
+ 1 , α <

1
λ*(A)

xi = α ∑
j∈N(i)

yj , yi = β ∑
j∈N(i)

xj , αβ =
1

λ*(A A⊤)

xi =
1

n − 1 ∑
j

1
sij

, : length of shortest path from  to jsij i

, : set of shortest path from  to jsij ixi =
1
n2 ∑

jk

| i ∈ si
jk |

|sjk |

, : largest eigenvalue of Aλ*(A)
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Outline

● Quick Recap of Centrality Measures 
● Modules 

○ Real graphs are modular
○ Spectral clustering 
○ Objectives for quality of a module
○ TopLeaders
○ Using Betweenness Centrality
○ Modularity Optimization, FastModularity & Louvain
○ Resolution limits of Modularity
○ Link clustering
○ Evaluating clustering results
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Dolphins 

6

C. elegans neural 
network

Facebook

Twitter

Yeast protein protein 
interaction networks
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Example Applications

Module identification in biological networks

● Protein complexes and functional modules in 
PPI networks (Spirin & Mirny, PNAS 2003) 
○ protein complexes: proteins that interact to carry out a task as a single 

complex unit, e.g., RNA splicing
○ functional units: proteins that bind at different time to participate in a 

cellular process, e.g., communicating a signal from the surface of the 
cell to the nucleus

● Representation of the metabolic networks (R 
Guimerà & Amaral, Nature 2005)
○ ultra-peripheral metabolites (that have all their connections 

inside their modules) have the highest evolutionary loss rate, 
whereas connector hubs (that connect to most of the other 
modules) are the most conserved across the species
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Modules give a coarse-grained representation of the structure

Also referred to as meso-scale, cluster, communities, etc.

Modules as Coarse Representation

Facebook

Students
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Clustering a.k.a Community Detection

Given a graph, how to cluster the nodes into modules?

Community 
detection 
algorithm

A

C ∈ [1…k]n

 gives cluster 
index of node 
Ci ∈ [1..k]

i

• vector or a function:

Common formulations:

 gives set of nodes 
belonging to cluster 
Ci

i

C = {C1, C2…Ck}

Ci ∩ Cj = ∅∀i ≠ j
∪k

1 Ci = V

• Set of disjoint sets:

: set of all nodes
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[[ 3 -1 -1 -1  0]
 [-1  3 -1  0 -1]
 [-1 -1  4 -1 -1]
 [-1  0 -1  2  0]
 [0  -1 -1  0  2]]

9

Spectral clustering: Laplacian Matrix

Uses the relation between connectivity & Laplacian matrix

Recall: 

Laplacian Matrix: 

 is symmetric & positive-semidefinite 

L = D − A

L

[[3 0 0 0 0]
 [0 3 0 0 0]
 [0 0 4 0 0]
 [0 0 0 2 0]
 [0 0 0 0 2]]

D

[[0 1 1 1 0]
 [1 0 1 0 1]
 [1 1 0 1 1]
 [1 0 1 0 0]
 [0 1 1 0 0]]

A L

: adjacency matrix 

: diagonal matrix of degrees

A
D

example

1

2

3

5

4
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Spectral clustering: Laplacian Spectrum
Uses the relation between connectivity & Laplacian matrix

●  : Eigenvalues of Laplacian Matrix
● We have n eigenvalues which we call Laplacian Spectrum:

●  is always zero since we have  : why?
●  ⇒  is number of connected components
● Largest is bounded by twice the maximum degree in G

●  

● Spectral gap: smallest nonzero eigenvalue
● Fiedler vector: eigenvector corresponding to the spectral gap
● Spectral ordering: Fiedler vector sorted
● Laplacian Spectrum relates to graph connectivity & clustering

Lu = λu

0 = λ0 ≤ λ1 ≤ λ2 ≤ … ≤ λn

λ0 L(1,1...1) = 0
0 = λ0 = λ1 = λ2 = … = λk k

E =
1
2 ∑

i

di =
1
2

T r (L) =
1
2 ∑

i

λi
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Consider function  that maps 
vertices to a value

x : i ↦ ℝ

Spectral clustering: Laplacian Matrix & Smoothness 

See this for more details.

Measures how much the value of f is smooth over edges, 
i.e. the difference of values for connecting nodes 

How to find modules?

x⊤L x = x⊤Dx − x⊤Ax = ∑
i

dix2
i − ∑

ij

xixj Aij =
1
2

[∑
i

dix2
i − 2∑

ij

xixj Aij + ∑
i

dix2
i ] =

1
2 ∑

ij

Aij(xi − xj)2

 Find  that give smoothest results, i.e, minimizes thisx

For any function on a graph we have

x ∈ ℝn ⇒ x⊤Lx =
1
2 ∑

ij

Aij(xi − xj)2

x = [x1, x2, …, xn]

x1
x2

x3

x7

x6

x5 x8

x10

x4

x11
x12

x9

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Spectral clustering: Graph Cut

See this for more details.

x⊤Lx =
1
2 ∑

ij

Aij(xi − xj)2

x = [+1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, − 1, − 1, − 1, − 1]

 +1 if  else -1xi i ∈ 1

● Cut edges =  , why?
1
4

x⊤Lx

Minimize given 

That is having the same number of nodes in each cluster

xi ∈ {+1, − 1}, ∑
i

xi = 0

+1

-1

x1
x2

x3

x7

x6

x5 x8

x10

x4

x11
x12

x9

Minimize:

● How to enforce balanced clusters?

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Spectral clustering: Graph Ratio Cut

See this for more details.

x⊤Lx =
1
2 ∑

ij

Aij(xi − xj)2

x = [+1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, − 1, − 1, − 1, − 1]

+1

-1

x1
x2

x3

x7

x6

x5 x8

x10

x4

x11
x12

x9

Minimize:

Given 

Relax ⇒ , then

                  

● Second smallest eigenvalue
⇒ sparsest ratio cut

● Signs of corresponding eigenvector 

xi ∈ {+1, − 1}, ∑
i

xi = 0

xi ∈ ℝ, ∑
i

x2
i = n

Min
1
4

x⊤Lx =
1
4

nv⊤
1 Lv1 =

1
4

nλ1

Courant Fischer Minimax Theorem 

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Spectral clustering: Normalized Cut 

Spectral clustering with unnormalized Laplacian optimizes the RatioCut =

We can use normalized Laplacian matrix which optimizes normalized cut =
Random walk normalization: 

● used for spectral clustering by Shi and Malik (2000)

Symmetric normalization: 
● used for spectral clustering by Ng, Jordan, and Weiss (2002)

 &  are positive semi-definite and have n non-negative real-valued eigenvalues
● Multiplicity of zero eigenvalues in both still gives the number of connected components
● Their eigenvalues are the same, and eigenvectors related

K Clusters? 
Use k-means on first (nontrivial) k eigenvectors (each node is represented with k features)

Lrw = D−1L = I − D−1A

Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2

Lsym Lrw

Further reading? See this 

x1
x2

x3

x7

x6

x5 x8

x10

x4

x11
x12

x9

Cut? 2
RatioCut?

2
4

+
2
8

NormCut?
2

12
+

2
18

k

∑
i

cu t (Ci, C̄i)
|Ci |

, cu t (Ci, C̄i) = ∑
j∈Ci k∉Ci

Ajk

k

∑
i

cu t (Ci, C̄i)
vol(Ci)

, vol(Ci) = ∑
j∈Ci

dj number of edges 
in the clusters

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Further reading? See this 

Lrw

Lrw

15

Knn: the first four eigenvalues are 0, and 
the corresponding eigenvectors are 
cluster indicator vectors since clusters 
form disconnected parts in the k-nearest 
neighbor graph

fully connected graph: wighted by 
similarity, the first eigenvector is the 
constant vector. The following 
eigenvectors carry the information about 
the clusters. 

 [example] Eigenvectors as indicator vectors of clusters
a random sample of 200 points drawn according to a mixture of four 
Gaussians: x1, . . . , x200 ∈ R ⇒ similarity graph with knn or complete graph

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Objectives for quality of a community

Globally-defined quality function to 
partition the whole network 

Locally defined quality function for one 
subset of nodes in a network 

Q(              ) f (             )

Gives one set of nodes belonging to the same 
cluster

Gives sets of sets, set of all clusters, usually 
disjoint and covering the full data

We can define the community detection either globally or locally and have global or local algorithms. 
Local algorithms are the choice when really with graphs that do not fit in memory.
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f (             )
Locally defined quality function for one 
subset of nodes in a network 

● Conductance (Sinclair & Jerrum 1989)

● Normalized Cut (Shi & Malik 2000)

S: a set of 
nodes in one 
cluster

18

In the example 
above

Objectives for quality of a community

Globally-defined quality function to 
partition the whole network 

● Q-modularity (Newman 2003)
= 3/(2*7+3)

= 3/(2*7+3) 
+ 3/(2*(12)+3)

C: sets of sets, set of 
all clusters, usually 
disjoint and covering 
the full data

= total edges in the graph
: degree of nodes i
: cluster index that node i belongs to

m
di
Ci
δ(x , y) = 1 ⟺ i = j

Most common 
representativesQ =

1
2m ∑

ij
(Aij −

didj

2m )δ(Ci, Cj)

 = cut size: number of edges going out of module

= module size: number of edges inside module
 = vol (S) = sum of degrees for nodes in S

cS
mS
2mS + cS

f (S ) =
cS

2mS + cS

f (S ) =
cS

2mS + cS
+

cS

2(m − mS) − cS

Q(              )
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Locally defined objectives 

Defining and evaluating network communities based on ground-truth (Yang, J., Leskovec, J., Knowledge and Information Systems, 2015)

● Community detection from a seed node 
○ Measure proximity of nodes from seed using random walk

○ Expand from the closest node ( ), and compute the objective for every first k nodes

○ Local optima of objective (e.g. conductance) correspond to detected communities

ri
di

https://arxiv.org/pdf/1205.6233.pdf
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● Number of links between them is more than chance
○ Modularity Q (Newman & Grivan, Phys Rev E, 2004)

■ FastModularity (Clauset, Phys Rev E 2005); Louvain (Blondel et al., J Stat Mech Theory Exp,  2008) 

● Within them a random walk is more likely to trap 
○ Walktrap (Pons & Latapy, ISCIS 2005)

● Coding gives efficient compression of any random walk
○ Infomap (Rosvall & Bergstrom, PNAS 2008; PloS One 2010)

● Follow their closest leader 
○ TopLeader 

Defining the Global Modular Structure of Networks 
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● Iteratively assigns nodes to leaders, selects leaders
○ Leader: central member in community
○ Community: set of followers surrounding a leader
○ Assigning followers to closest leader based on neighbourhoods

● Initialization requires k (central nodes with few neighbours in common)

● Also identifies outliers and hubs in the network
● Closeness measure based on diffusion of innovation 

22

TopLeaders: K-medoid for graphs

27

More neighbours More cohesive neighbours More extended neighbours
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(Girvan and Newman, PNAS 2002)

1. Calculate the betweenness for all edges in the network

2. Remove the edge with the highest betweenness

3. Recalculate betweennesses for all edges affected by the removal

4. Repeat from step 2 until no edges remain

5. When to stop?

First community 
detection algorithm 

the infamous Karate club dataset 
https://networkkarate.tumblr.com/

A divisive hierarchical clustering

Where to cut the dendrogram?

https://www.pnas.org/content/pnas/99/12/7821.full.pdf
https://networkkarate.tumblr.com/
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Example

A divisive hierarchical clustering

Recursively remove 
bridges, edges with high 
edge-betweenness

In the resulted 
dendrogram, evaluate M 
for flat modules obtained 
at different levels

How to define M?
k

1 2 3

3

1

2
3
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Originally proposed to know where to cut the dendrogram, but we optimize this directly in practice

Measure the difference between the fraction of edges that are within the clusters and the 
expected such fraction if the edges were randomly distributed when degrees are fixed, i.e. 
using the configuration model as the null model

Q-modularity: goodness of a global partition

= total edges in the graph
: degree of nodes I
: cluster index that node i belongs to

  {Kronecker delta}

m
di
Ci
δ(x , y) = 1 ⟺ i = j

Q =
1

2m ∑
ij

(Aij −
didj

2m )δ(Ci, Cj)

Q = ∑
k

∑
ij∈Ck

Aij

2m
−

di

2m
dj

2m
Sum over all pairs 
of nodes in the 
same cluster

probability of an edge in 
configuration model 

Only nonzero if  and  
are in the same cluster

i j

Q ≤ 1
Rule of thumb: 
indicates strong communities 

Q > 0.3
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Measure the difference between the fraction of edges that are within the clusters and the expected such fraction if the edges 
were randomly distributed when degrees are fixed, i.e. using the configuration model as the null model

Q-modularity: goodness of a global partition

= total edges in the graph
: degree of nodes i
: cluster index that node i belongs to

  {Kronecker delta}

m
di
Ci
δ(x , y) = 1 ⟺ i = j

Q =
1

2m ∑
ij

(Aij −
didj

2m )δ(Ci, Cj)

Q = ∑
k

∑
ij∈Ck

Aij

2m
−

di

2m
dj

2m

Q = ∑
k

Ekk − E2
k = Tr[E] − ∥E2∥ Ekl = ∑

i∈ck, j∈cl

Aij

2m
where

Fraction of 
edges within 
clusters

 

Expected fraction of 
edges within clusters 
by chance, i.e. in 
configuration model

Ek = ∑
l

Ekl = ∑
kl

E2
ij

fraction of edges between cluster  and k l
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(Newman, Phys. Rev. E 2004)

1. Start from every node a cluster 
2. Initialize  as the adjacency matrix
3. Merge two cluster that give the highest gain in Q:

1. Update the  by merging together the rows and columns 
corresponding to the joined communities

2. Go to step 3 until no increase in Q

E

E

ΔQ = 2(Eij − EiEj)

Modularity optimization: a
an agglomerative hierarchical clustering
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● Divisive hierarchical clustering (Girvan and Newman, PNAS 2002)
○ Removes the edge with highest betweenness
○ All pairs shortest paths: expensive to compute
○ can be approximated but still not scalable

● Agglomerative hierarchical clustering (Newman, Phys. Rev. E 2006)
○ Start from every node a cluster, and merge
○ : n, m: number of nodes and edges
○ With heap based data structure ⇒   (Clauset et al., 2004)

   ⇒ FastModularity

𝒪(n(m + n))
𝒪(m log n)

Modularity optimization
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Agglomerative method tends to produce super-communities => go Louvain

Each node its own cluster

Move nodes to neighbouring cluster (through the links) with maximum gain 
Aggregate clusters as nodes

Repeat

(Blondel et al. Journal of Statistical Mechanics, 2008)

Louvain, another agglomerative method 

 : very fast and can be used for large graphs𝒪(n log n)

Q = ∑
k

∑
ij∈Ck

Aij

2m
−

di

2m
dj

2m
Q = ∑

k
∑
ij∈Ck

Wij − Wi.Wj. W =
1

2m
Awhere

ΔQ = 2∑
j∈k

Wij − Wi.Wj.

=>
 : normalized 

weight of the edge 
from node  to node j

Wij

i

Gain of adding 
node  to 
community k is

i
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very different divisions of the network can have 
the same  modularity

Resolution limit, the inability to see communities 
in a network if they are too small, relative to the 
size of the network as a whole 

Q

Modularity optimization: limitations

E.g. 5000 edges, can not detect 
degree sum less than 100

ΔQ =
1

2m
− EiEj > 0 ⟺ EiEj > 2m

modularity maximization will fail to 
distinguish these groups as separate 
communities if the product of the sums of 
their degrees is less than twice the number of 
edges in the entire network
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Overlap, hierarchy, periphery 
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Link Clustering

Find overlapping clusters naturally by 
clustering edges instead of nodes

The similarity of a link pair is 
determined by the neighbourhood of the 
nodes connected by them.

Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale 
complexity in networks. nature. 2010 Aug;466(7307):761-4.
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Evaluating the Modular Structure of Networks 

Given different algorithms which one to choose?

We can do external and/or internal/relative evaluation
• External Evaluation: Compare performances on benchmark datasets with known true clusters

• useful for designing algorithms 
• Internal Evaluation: use a quality index to pick an algorithm for datasets, e.g. Q-modularity

• useful when applied to real world graph with unknown clusters
•  see here for comparison of Q with some alternatives

http://www.reirab.com/research/Papers/asonam12rabbanyk.pdf


External Evaluation of Community Detection: a common practice

  ( G1 , U1 )
  ( G2 , U2 )
  ( G3 , U3 )
        

Validate on graph 
benchmarks with 
known true partition

Assumption:
average performance on 
benchmarks predicts how well 
the algorithm would be in 
practice when applied to data 
with unknown clusters

G1

Ground-Truth

U1

For each benchmark 
compare results of each 
algorithm with ground-truth

For this comparison we need an agreement measure that gets two clusterings and quantifies how much they agree. 



● Set matching
● Information theoretic 
● Pair counting

Clusterings Agreement Measures

There are 3 main families:

A(            ,            )

A measure of agreement for clusterings quantifies how much they agree. 



Clusterings Agreement Measures: Set Matching family

“problem of matching” since it only 
compares the best matched clusters Read more here

Based on a one-2-one matching between clusters 
in the two partitioning 

A(U1, V ) A(U2, V )

Which one of  and  
better agrees with :

U1 U2
V

example:

>

http://www.reirab.com/research/Papers/DAMI15.pdf


Clusterings Agreement Measures: Information theoretic family
Examples: Variation of Information (VI), Normalized Mutual Information (NMI)

12 6 0 0

0 0 11 0

0 0 0 5

B

R

Y

B R YG

Consider all the pairwise overlaps between 
clusters as a joint distribution then define joint 
entropy and mutual information. 

NMI =
I(U, V )

1
2 [H(U ) + H(V )]

H(U, V ) = − ∑
k

∑
r

nij

n
log

nij

n

H(U ) = − ∑
k

ni.

n
log

ni.

n

 overlap size between cluster  and nij : i j

NMI =
H(U, V ) − H(U ) − H(V )

1
2 [H(U ) + H(V )]



Examples: Jaccard, Rand Index, F-measure, Adjusted Rand Index (ARI)

Clusterings Agreement Measures: Pair counting family

Sa
m

e

Same

D
iff

er
en

t

Different
TP FN

FP TN

+1

+1

+1

Consider the number of pairs of datapoints 
which are in the same or different clusters in 
the two clusterings then compute F-measure 



Examples: Jaccard, Rand Index, F-measure, Adjusted Rand Index (ARI)

Clusterings Agreement Measures: Pair counting family

Consider the number of pairs of datapoints which are in the same or 
different clusters in the two clusterings then compute F-measure 

12 6 0 0

0 0 11 0

0 0 0 5

B

R

Y

B R YG

( )12
2 ( )6

2 ( )11
2 ( )5

2+ + +TP =

Sa
m

e

Same

D
iff

er
en

t

Different

TP FN

FP TN

Read more here

We can derive these also from the all the pairwise overlaps 
between clusters [which is used by information theoretic measures]

For example we can compute TP as: 

ARI =
∑ij (nij

2 ) − ∑i (ni.
2 )∑j (n. j

2 )/n2

1/2[∑i (ni.
2 ) + ∑j (n. j

2 )] − ∑i (ni.
2 )∑j (n. j

2 )/n2

http://www.reirab.com/research/Papers/DAMI15.pdf


Both pair counting and information theoretic measures are quantifying 
dispersion in the confusion/contingency table

18

11

5

12 6 11 5

φ (18) - φ (12) - φ (6) 
φ (11) - φ (11) 
φ (5) - φ (5) 

Σ

Σ

φ(18) - φ(12) - φ(6)

φ(34) 

34

Generalization: Linking the two families

Read more here

12 6 0 0

0 0 11 0

0 0 0 5

B

R

Y

B R YG
∑

A =

Φ(x) = x log(x) ⇒ A =
1

log(34) [H(U, V ) − I(U, V )] Variation of 
Information 

Subsumes information theoretic

   Rand Index A = 1 −
TP + TN

TP + TN + FP + FN
Φ(x) = (x

2) ⇒Subsumes pair counting

http://www.reirab.com/research/Papers/DAMI15.pdf


Φ(x) = x log(x) ⇒ ̂A = NMI Normalized Mutual 
Information 

Subsumes information theoretic

   Adjusted Rand Index ̂A = ARIΦ(x) = (x
2) ⇒Subsumes pair counting

+φ(        )×
18
34

12
34

φ(        )×
18
34

6
34 φ(        )×

18
34

11
34+ + . . .

Both pair counting and information theoretic measures are quantifying 
dispersion in the confusion/contingency table

18

11

5

12 6 11 5

φ (18) - φ (12) - φ (6) 

φ (11) - φ (11) 

φ (5) - φ (5) 

Σ

Σ

φ(18) - φ(12) - φ(6)
 

34

Generalization: Linking the two families

Read more here & here

∑
12 6 0 0

0 0 11 0

0 0 0 5

B

R

Y

B R YG

̂A =

ARI is more robust 
to changes in 
number of clusters
NMI tends to 
increase with 
number of clusters 

http://www.reirab.com/research/Papers/DAMI15.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10905


Which agreement measure to choose?
either ARI and NMI, both are quantifying dispersion in the contingency table

External Evaluation

Read more here 

• ARI is more robust to changes in number of 
clusters and is a better choice when number of 
cluster varies too much 

• NMI tends to increase with number of clusters 
even when clusters are random

Which benchmarks to use?
There are few small real world benchmarks with known clustering, 
as well as large ones with attributes closely related to known 
clustering that we use as a proxy for ground-truth (e.g. venues papers 
are published in for citation graph). But we often mostly evaluate 
algorithms in a controlled setting with synthetic graph generators 
that have builtin ground-truth, e.g. SBM, LFR or FARZ where we can 
control how well separated the clusters are [difficulty of the task]

difficulty

Pe
rf

or
m

an
ce

well separated: easy 

highly mixed: hard 

http://www.reirab.com/research/Papers/rabbany13validity.pdf
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.planted_partition_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.LFR_benchmark_graph.html
https://arxiv.org/pdf/1801.01229.pdf


Matrix Formulation of Clusters for Overlapping Clusters

C ∈ [1…k]n

 gives cluster 
index of node 
Ci ∈ [1..k]

i

• Vector or a function:

 gives set of nodes 
belonging to cluster 
Ci

i

C = {C1, C2…Ck}

Ci ∩ Cj = ∅∀i ≠ j
∪k

1 Ci = V

• Set of disjoint sets:

: set of all nodes

 gives the degree to 
which node  belonging 
to cluster 

Cik
i

k

C ∈ ℝn×k

• Membership Matrix:  : how many clusters 
node i and j appeared together

: how many nodes 
clusters i and j have in common

(UU⊤)ij

(U⊤U )ij

Read more here & here

http://www.reirab.com/research/Papers/DAMI15.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10905

