

#### **Quick Notes**

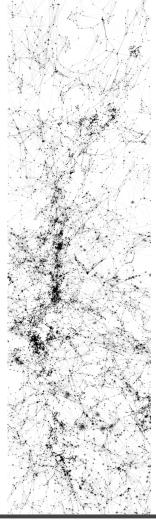
- Reminder, first assignment due in a week
  - http://www.reirab.com/Teaching/NS22/Assignment\_1.pdf
  - Any questions for the assignment?
  - Submit single entry as a Group in Mycourses
  - On the report, make sure it is well-written
    - Plots have legends, axes are marked clearly, datasets explained
    - Explain what you have done, reference each (set of) plot(s) in text
- Use Ed for easier communications



#### Outline

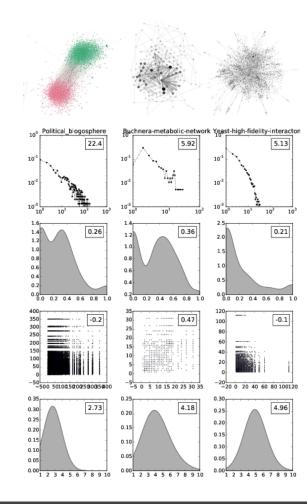
#### Patterns Quick recap

- Models
  - ER model
  - BA model
  - SBM
  - Configuration model
  - FF model
  - Kronecker graph model
  - Fitting to observed graphs
  - LFR model



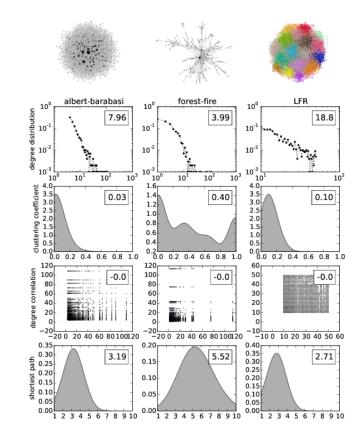
### Patterns: quick recap

- Sparsity Pattern
  - mean degree << number of nodes (E << Emax)</li>
- Scale Free Pattern
  - heavy tailed degree distribution
- Assortativity Pattern
  - positive or negative correlation between degree of connecting nodes
- Transitivity Pattern
  - high ratio of closed triangles (clustering coefficient)
- Small world Pattern
  - small average shortest path



#### Outline

- Patterns Quick recap
- Models
  - ER model
  - o SBM
  - Configuration model
  - AB model
  - FF model
  - Kronecker graph model
  - Fitting to observed graphs
  - LFR model



### Erdös-Rényi Model (ER)

- Introduced in 1960
- Basis of **random graph** theory
- Simple model that results in **small-world** graphs
- Parameters:  $\mathcal{G}(n,p)$  or  $\mathcal{G}(n,m)$ 
  - n: number of nodes
  - p: probability of an edge between any two nodes
  - m: number of edges
- Generation: How can we generate an ER graph?

all edges are equally likely



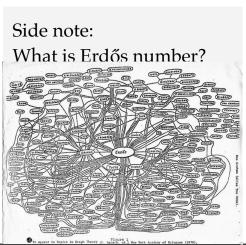


ER(n, p)



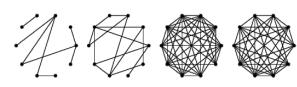


**Paul Erdős Alfréd Rényi** (1913-1996) (1921-1970)



### Erdös-Rényi Model (ER)

- Introduced in 1960.
- Basis of **random graph** theory
- Simple model that results in **small-world** graphs
- Parameters:  $\mathcal{G}(n,p)$  or  $\mathcal{G}(n,m)$ 
  - n: number of nodes
  - p: probability of an edge between any two nodes
  - o m: number of edges
- Generation: How can we generate an ER graph?
  - $\mathcal{G}(n,p)$ : for each pair of node connect them with probability  $p(\mathcal{O}(n^2))$ : toss M (n choose 2) coins {has linear time implementation}
  - $\circ$   $\mathscr{G}(n,m)$ : for each edge, select a random source and destination( $\mathscr{O}(m)$ ): roll 2m n-sided die



$$N = 10, \quad M = \binom{10}{2} = 45$$

What is p here?



## Erdös-Rényi Model (ER): Binomial Graphs

- Generation: How can we generate an ER graph?
  - $\mathcal{G}(n,p)$ : toss M (n choose 2) biased coins (with success probability p)
- ER Graphs are also called **Binomial Graphs** 
  - A coin's outcome has a Bernoulli distribution, *x* is a Bernoulli random variable that takes values of 0 or 1 with:

$$Bernoulli(x|p) = p^{x}(1-p)^{(1-x)} \quad \text{or} \quad Bernoulli(x|p) = \begin{cases} p & x = 1\\ 1-p & x = 0 \end{cases}$$

Number of heads in a sequence of independent coin tosses follows a Binomial distribution

Probability of generating a graph with m edges

Binomial(M, m | p) = 
$$\binom{M}{m}$$
Select m edges out of having m links

Probability of not having the rest of links



## Erdös-Rényi Model (ER): Degree Distribution

- ER Graphs are also called **Binomial Graphs** 
  - Probability of an edge:

$$Bernoulli(x \mid p) = p^{x}(1-p)^{(1-x)}$$

Probability of generating a graph with m edges:

$$Binomial(M, m \mid p) = \binom{M}{m} p^m (1-p)^{M-m}$$

Degree distribution:

$$p(k) = Binomial(n-1, k | p) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
Probability of having k links

Probability of having k links

Probability of not having the rest of links

not having the rest of links

having k links

## Erdös-Rényi Model (ER): Degree Distribution

Degree distribution:

$$p(k) = Binomial(n-1, k \mid p) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Probability of having k links

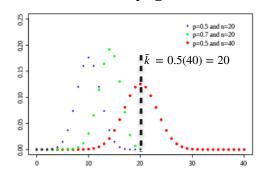
Select k neighbours out of n-1 possible nodes

Probability of having k links

rest of links

We know the mean and variance of a Binomial distribution, so we easily get:

- Mean Degree: p(n-1)
- Variance of Degree: p(1-p)(n-1)



10

## Erdös-Rényi Model (ER): Degree Distribution

• Degree distribution:

$$p(k) = Binomial(n-1, k \mid p) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$
Probability of not having the rest of links out of n-1 possible nodes

For large n and small k, which is often the case in real world graphs, we can **approximate** this with Poisson distribution with mean of average degree  $\int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} \mathbb{R}^{n} d \cdot \mathbb{R}^{$ 

$$p(k) = e^{-\bar{k}} \frac{\bar{k}^k}{k!}$$

• ER graphs are therefore also sometimes called **Poisson random graphs** 

Red – Binomial Distribution with n=118 and p=0.26  $Blue – Poisson Distribution with <math>\lambda=30.09$   $n=118 \qquad p=0.26$   $mean=\lambda=np=30.09$ 

# Erdös-Rényi Model (ER): Clustering Coefficient

• Local clustering coefficient: 
$$c_i = \frac{A_{ii}^3}{k_i(k_i - 1)} = \frac{2\mathscr{E}_i}{k_i(k_i - 1)}$$

where  $\mathscr{E}_i$ : number of edges between neighbours of *i* 

Expected number of edges between i's neighbours, given since edges are i.i.d and equally likely:

$$E[\mathcal{E}_i] = \frac{k_i(k_i - 1)}{2}$$
Probability
of an edge between a pair

Number of distinct pairs of neighbours of i

Expected clustering coefficient becomes:

$$E[c_i] = p \frac{k_i(k_i - 1)}{k_i(k_i - 1)} = p = \frac{\bar{k}}{n - 1}$$

- Small [Zero] clustering coefficient
  - The clustering coefficient is average degree divided by number of nodes therefore with fixed average degree, and when n grows, clustering coefficient goes to zero

## Erdös-Rényi Model (ER): Connectivity

— that is when  $\bar{k} = 1$ Emergence of a giant component at p =A network component whose In expectation, every node size grows in proportion to n has one edge we call a giant component. Avg deg = 1 1/(n-1) c/(n-1) log(n)/(n-1) 2\*log(n)/(n-1) Giant component Fewer isolated No isolated nodes. Avg. deg const. appears Lots of isolated nodes. Complete Empty nodes. graph graph  $\bar{k} = n - 1$  $\bar{k} = 0$ 

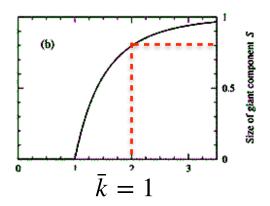
( 6

## Erdös-Rényi Model (ER): Connectivity

Emergence of a giant component at 
$$p = \frac{1}{n-1}$$
 that is when  $\bar{k} = 1$ 

A network component whose size grows in proportion to n we call a giant component.

In expectation, every node has one edge

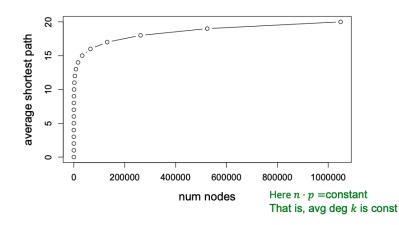


- With average degree of 2, 80% of nodes are in the GCC
- in the limit of large *n*, the probability that we will have two separate giant components in such a network goes to zero



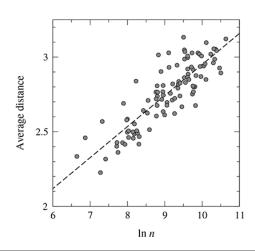
## Erdös-Rényi Model (ER): path length

- ER graphs are Small world
  - The diameter is  $\log(n)/\log(pn)$
- Example: we increase the number of nodes, while keeping the average degree constant, average shortest path increase is logarithmic, that is in order of  $\mathcal{O}(\log(n))$



Compare it with the pattern in real world networks: Average shortest path distance in Facebook friendship networks of 100 US universities (with different sizes)

from Newman's book





# Erdös-Rényi Model (ER) VS Real Graphs

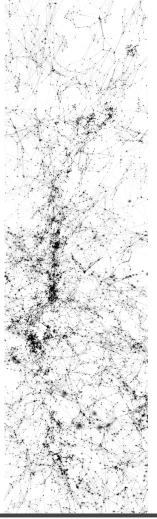
- Binomial degree distribution
- Low clustering coefficient
- Small average path length

- Sparsity Pattern
  - mean degree << number of nodes
- Scale Free Pattern
  - heavy tailed degree distribution
- Assortativity Pattern
  - correlation between connecting nodes
- Transitivity Pattern
  - high ratio of closed triangles
- Small world Pattern
  - small average shortest path

Real world graphs are not random

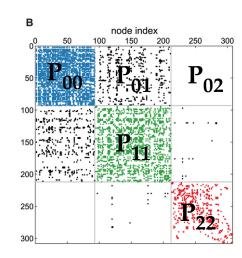
#### Outline

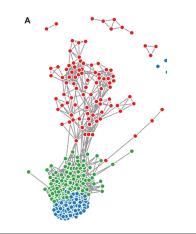
- Patterns Quick recap
- **Models** 
  - ER model
  - **SBM**
  - Configuration model
  - AB model
  - FF model
  - Kronecker graph model
  - Fitting to observed graphs
  - LFR model



### Stochastic Block Models (SBM)

- Generalized ER to created block-structured graphs
- Parameters:
  - on: number of nodes
  - B: number of blocks, disjoint sets that divide the n nodes
  - $\circ$  P:  $B \times B$  probabilities per each (and between any pairs of) block
- Generation: create an ER graph in each (within, between) block with the corresponding probability, i.e. probability of edge depends on the block memberships of its adjacent nodes
  - o  $p(A_{ij} = 1) = P_{b_i b_i}$ , where  $b_i$  gives the block id of node i





# Stochastic Block Models (SBM) VS Real Graphs

- Each block has Binomial degree distribution
- Low clustering coefficient
- Small average path length

There is degree corrected block models, see <a href="here">here</a>

$$p(A_{ij} = 1) = Bernoulli(\theta_i \theta_j P_{b_i b_i})$$

- Sparsity Pattern
  - mean degree << number of nodes</li>
- Scale Free Pattern
  - o heavy tailed degree distribution
- Assortativity Pattern
  - o correlation between connecting nodes
- Transitivity Pattern
  - high ratio of closed triangles
- Small world Pattern
  - small average shortest path

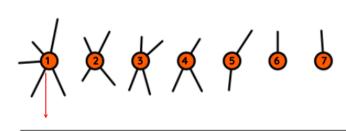
Similar to ER

### Configuration model

- By Mark Newman, generalizing ER to specific degree distribution
- Parameters: degree sequence (can be easily sampled from any distribution)
- Generation: assign slots, randomly connect them

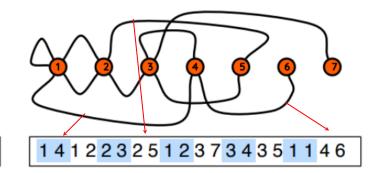
 $p_{ij} = \frac{k_i k_j}{2m - 1} \approx \frac{k_i k_j}{2m}$ 

- Serves as a null model for community detection
  - o edges are distributed randomly given the degrees are fixed
  - o communities that are not formed randomly should deviate from this



Slot endpoint node ids

11111222233334445567





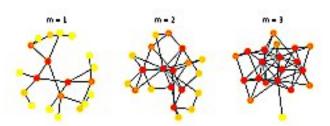
### Albert Barabasi Model (AB)

- Introduced in 1999, a.k.a Barabási–Albert (BA) model
- Uses preferential attachment which gives scale-free graphs
- Parameters: BA (n,m)
  - on: number of nodes
  - o m: average degree



- o add one node at the time, add **m** connections per new node if possible
- o probability of forming a connection to an existing node is proportional to its degree:

$$p(i) = \frac{k_i}{\sum_j k_j} = \frac{k_i}{2m}$$



## Albert Barabasi Model (AB) VS Real Graphs

- Powerlaw degree distribution,
- Low clustering coefficient
- Small average path length

- Sparsity Pattern
  - mean degree << number of nodes</li>
- Scale Free Pattern
  - heavy tailed degree distribution
- Assortativity Pattern
  - o correlation between connecting nodes
- Transitivity Pattern
  - high ratio of closed triangles
- Small world Pattern
  - small average shortest path

Similar to Configuration Model

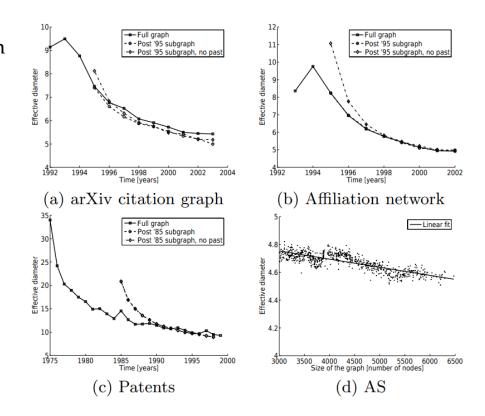
16

## Evolution Patterns of Real Graphs: beyond static patterns

Looking at measures over time or as graph grows (x-axis usually time or number of nodes)

e.g. diameter shrinks over time in many real work graphs

See more here: <u>Graphs over Time</u>: <u>Densification Laws</u>, <u>Shrinking Diameters</u>, and <u>Possible Explanations</u>



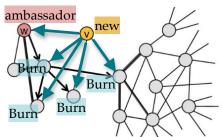
**C** 

#### Forest Fire model (FF)

- By Leskovec, 2005
- To follow **evolution patterns** observed in real-world graphs
  - odenser over time, the average degree increasing, and the diameter decreasing ambassador
- Parameters: n, p and rp
  - o n: number of nodes
  - p: forward burning probability
  - o r: backward burning probability

#### Generation:

- o add a node at a time, connect the node to an ambassador, chosen uniformly at random
- o draw number of inlink and outlink from geometric distributions with means of p/(1-p) and r/(1-r) respectively
- the new node recursively forms (out)links to the (in & out) neighbours of every node it connects to until fire dies

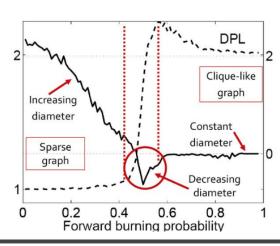




**O** 

### Forest Fire model (FF): properties

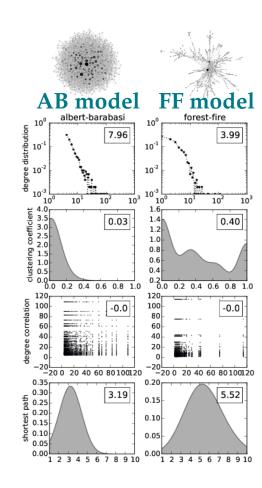
- Heavy-tailed degree distribution
  - o rich get richer: older nodes have more chances to become ambassadors
- Densifies
  - o newly entered node has more links to neighbours close to its ambassador
- Can result in shrinking diameter
  - Which is observed in real-world networks





#### Outline

- Patterns Quick recap
- Models
  - ER model
  - SBM
  - Configuration model
  - AB model
  - FF model
  - Kronecker graph model
  - Fitting to observed graphs
  - LFR model



## Kronecker graph model

Kronecker product of matrices

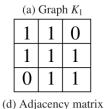
Based on self-similarity, generate graphs recursively [Leskovec, 2010] 
$$\begin{array}{c} \mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \\ \end{array} \right).$$
 whole has the same shape of its part

whole has the same shape of its part

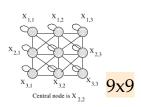
Consider a small initiator matrix, use kronecker products to get the adjacency

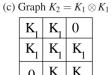
matrix as 
$$K_k = \underbrace{K_1 \otimes K_1 \otimes ... K_1}_{k \text{ times}} = K_{k-1} \otimes K_1$$



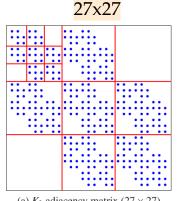


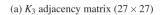
of  $K_1$ 

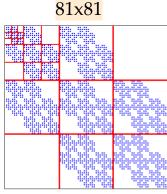




(e) Adjacency matrix of 
$$K_2 = K_1 \otimes K_1$$







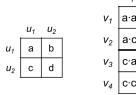
(b)  $K_4$  adjacency matrix  $(81 \times 81)$ 

More here: https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs



## Stochastic Kronecker graph model

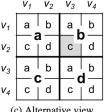
Stochastic Kronecker graph, initiator matrix is probabilities and edges are drawn for the final graph with the corresponding probabilities



(a)  $2 \times 2$  Stochastic Kronecker initiator  $\mathcal{P}_1$ 

|                        | V <sub>1</sub> | <b>V</b> <sub>2</sub> | <b>V</b> <sub>3</sub> | V <sub>4</sub> |  |  |
|------------------------|----------------|-----------------------|-----------------------|----------------|--|--|
| $V_1$                  | a∙a            | a∙b                   | b·a                   | b∙b            |  |  |
| $V_2$                  | а∙с            | a·d                   | b∙c                   | b∙d            |  |  |
| <b>V</b> <sub>3</sub>  | c∙a            | c.p                   | d∙a                   | d∙b            |  |  |
| $V_4$                  | с.с            | c·d                   | d∙c                   | d∙d            |  |  |
| (b) Probability matrix |                |                       |                       |                |  |  |

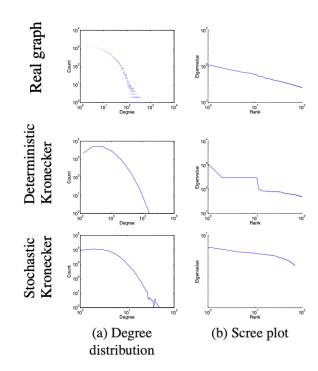
(b) Probability matrix  $\mathcal{P}_2 = \mathcal{P}_1 \otimes \mathcal{P}_1$ 



(c) Alternative view of  $\mathcal{P}_2 = \mathcal{P}_1 \otimes \mathcal{P}_1$ 

if all probabilities are equal in the initial matrix, this becomes equivalent to ER

how to generate efficiently? instead of  $n^2$  toss coins, we can go hierarchal, sample graphs linearly, by considering how the probability matrix is generated, for more detail see <a href="here">here</a>

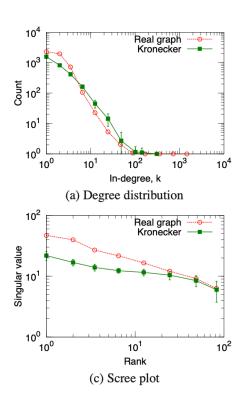


## Kronecker graph model

the initiator matrix can be set based on real-world data to sample similar graphs, by searching over what matrix is more likely to give the observed



for more detail see here



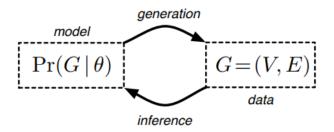
## Fitting to observed graphs: more general

#### Option 1:

- Measure and plot different characteristics of the observed graphs
- Tune the parameters of the model to find a close enough fit to the observed patterns

#### • Option 2:

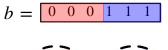
- Define the likelihood of observing a graph, usually assuming edges are independent
- Use maximum likelihood to find the model parameters



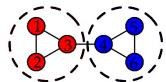
### Fitting the SBM to data

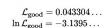
Likelihood of G given Probability matrix P and partitioning b

$$\begin{split} \mathcal{L}(G|P,b) &= \prod_{ij} P(i \to j \mid P,b) \\ \mathcal{L}(G|P,b) &= \prod_{ij \in E} P(i \to j \mid P,b) \prod_{ij \notin E} 1 - P(i \to j \mid P,b) \\ \mathcal{L}(G|P,b) &= \prod_{ij \in E} P_{b_i b_j} \prod_{ij \notin E} 1 - P_{b_i b_j} \end{split}$$

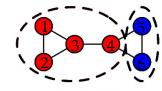








| D              |     |      |
|----------------|-----|------|
| $M_{\rm good}$ | red | blue |
| red            | 3/3 | 1/9  |
| blue           | 1/9 | 3/3  |



 $\mathcal{L}_{\mathrm{bad}} = 0.000244\dots$  $\ln \mathcal{L}_{\mathrm{bad}} = -8.3178\dots$ 

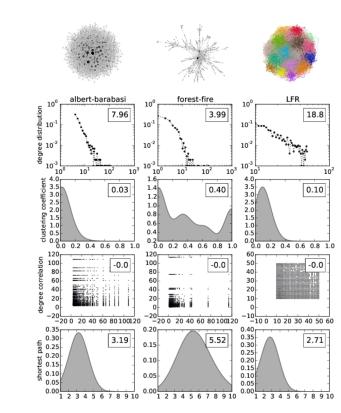
| $I_{ m bad}$ | red | blu |
|--------------|-----|-----|
| red          | 4/6 | 2/8 |
| blue         | 2/8 | 1/1 |

Recall in SBM:

 $p(A_{ij} = 1) = P_{b_i b_j}$ , where  $b_i$  gives the block id of node i

### Lancichinetti, Fortunato, and Radicchi (LFR) model

- Extends the configuration model
- Sample degree sequence and block sizes from power law distributions
- Randomly assign nodes to blocks according to sampled block sizes
- Wire nodes based on configuration model and the sampled degree sequence
- Rewire until each node has a fixed fraction,  $\mu$ , of links going outside its block



**M**