Comp 599: Network Science, Fall 2022



Quick Notes

e Reminder, first assignment due in a week
o  http://www.reirab.com/Teaching/NS22/Assignment_1.pdf

o0  Any questions for the assignment?
o  Submit single entry as a Group in Mycourses
©  On the report, make sure it is well-written
o Plots have legends, axes are marked clearly, datasets explained

o Explain what you have done, reference each (set of) plot(s) in text

e Use Ed for easier communications
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http://www.reirab.com/Teaching/NS22/Assignment_1.pdf
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Patterns: quick recap

e Sparsity Pattern
o mean degree << number of nodes (E << Emax)
e Scale Free Pattern
o heavy tailed degree distribution
e Assortativity Pattern
o positive or negative correlation between degree of
connecting nodes
e Transitivity Pattern
o high ratio of closed triangles (clustering coefficient)
e Small world Pattern

o small average shortest path
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https://arxiv.org/pdf/1801.01229.pdf
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Erdos-Rényi Model (ER)

e Introduced in 1960

e Basis of random graph theory e -

Paul Erd6s Alfréd Rényi
(1913-1996) (1921-1970)

e Simple model that results in small-world graphs

e Parameters: &(n, p) or &(n, m)

o n:number of nodes
o p: probability of an edge between any two nodes
o m: number of edges

Side note:

e Generation: How can we generate an ER graph?

all edges are equally likely
ER(n, p)
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Erdos-Rényi Model (ER)

e Introduced in 1960

e Basis of random graph theory

e Simple model that results in small-world graphs

e Parameters: &(n, p) or &(n, m)

o n: number of nodes What is p here?
o p: probability of an edge between any two nodes
o m: number of edges

e Generation: How can we generate an ER graph?
o Z(n,p): for each pair of node connect them with probability p (O(n?)): toss M (n choose 2)

COINS fhas linear time implementation}

o  &(n,m): for each edge, select a random source and
destination(®(m)): roll 2m n-sided die
Comp 599: Network Science 7



https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.036113

Erd6s-Rényi Model (ER): Binomial Graphs

e Generation: How can we generate an ER graph?
o Z(n,p): toss M (n choose 2) biased coins (with success probability p)

e ER Graphs are also called Binomial Graphs
o A coin’s outcome has a Bernoulli distribution, x is a Bernoulli random

variable that takes values of 0 or 1 with:

: (1 . p x =1
Bernoulli(x|p) = p*(1 = p)'™  or Bernoulli(x|p) =
Il-p x=0

o  Number of heads in a sequence of independent coin tosses follows a
Binomial distribution

: . M
Binomial(M,m|p) = < p"(—p M_P”I’Obabﬂity ps
R K . m o1
Probability of generating  sejectm i;?}i?sblrl:}’ of : v
a graph with m edges edges out of ' """'8 rest of links
M possible il
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Erdos-Rényi Model (ER): Degree Distribution

e ER Graphs are also called Binomial Graphs
o Probability of an edge:
Bernoulli(x|p) = p*(1 — p)—
o Probability of generating a graph with m edges:

. . M M-
Binomial(M,m|p) = p"(L—=p)* "
m

o Degree distribution:

: . n—1
p(k) = Binomial(n — 1,k|p) = < >pk(1 —p)1-
Probability of
Select k having k links
neighbours
out of n-1

possible nodes
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Erdos-Rényi Model (ER): Degree Distribution

® Degree distribution:

. . n — 1
p(k) = Binomial(n — 1,k|p) = ( >

Select k
neighbours
out of n-1
possible nodes

k —1-k
p*(l =p)*

Probability of

having k links

Probability of
not having the
rest of links

We know the mean and variance of a Binomial distribution, so we easily get:

o Mean Degree: p(n — 1)
o Variance of Degree: p(1 — p)(n — 1)
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Erdos-Rényi Model (ER): Degree Distribution

® Degree distribution:

: : n—1Y\ , ~1—k
p(k) = Binomial(n — 1,k|p) = p (1 - p)"

Probability of igzl;;k::il:y t()}fe
Select k having k links 8
. rest of links
neighbours
out of n-1

possible nodes

e For large n and small k, which is often the case in real world graphs, we can approximate

this with Poisson distribution with mean of average degree Red— Binomsil Distrébtion with n = 118 andp = 0.
02 Blue — Poisson Distribution with A = 30.09
n =118 p=0.26
_k ° L
]_< k 015 mean = A = np = 30.09
pk)y=e o )
e ER graphs are therefore also sometimes called Poisson random graphs
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Erdos-Rényi Model (ER): Clustering Coefficient

A; 28,

l

Local clustering coefficient: ¢; =

g kik;— 1) k(k;— 1)

where &, : number of edges between neighbours of i

e Expected number of edges between i’s neighbours, given since edges are i.i.d and equally likely:

ki(k; — 1
E[gi] — pM
Probability 2

e Expected clustering coefficient becomes: 2t 2" ¢48¢ Numberof

_ ) istinct pairs o

ki(ki — 1) k pair neighbours of i

Elgl=p———=p=

ki(ki - 1) n—1

Small [Zero] clustering coefficient

o The clustering coefficient is average degree divided by number of nodes therefore with fixed

average degree, and when n grows, clustering coefficient goes to zero

Comp 599: Network Science 12



Erdos-Rényi Model (ER): Connectivity

Emergence of a giant component at p = — that is when k = 1

A network component whose
size grows in proportion to n
we call a giant component.

n_

In expectation, every node

has one edge

Avg deg = 1
— | l l 1 1
p I I I 1 |
1/(n-1) c/(n-1) log(n)/(n-1) 2*log(n)/(n-1)
0O Giant component Avg. deg const. Fewer isolated No isolated nodes.
appears Lots of isolated nodes.
Empty nodes.
graph
@p=0 (b)p=1
k=0 =n-—1
Comp 599: Network Science 13



https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs

Erdos-Rényi Model (ER): Connectivity

Emergence of a giant component at p =

A network component whose
size grows in proportion to n
we call a giant component.

n-—1

(b}

05

Size of giant component §

[ FOS—

that is when k = 1

In expectation, every node
has one edge

e With average degree of 2, 80% of
nodes are in the GCC

e in the limit of large n, the
probability that we will have two
separate giant components in
such a network goes to zero
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Erd6s-Rényi Model (ER): path length

e ER graphs are Small world

O

Example: we increase the number of nodes, while keeping the
average degree constant, average shortest path increase is
logarithmic, that is in order of O(log(n))

average shortest path

The diameter is log(n)/log(pn)

o
N

'e)
-

10

Compare it with the pattern in
real world networks: Average
shortest path distance in
Facebook friendship networks
of 100 US universities (with
different sizes)

from Newman’s book
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Erd6s-Rényi Model (ER) VS Real Graphs

e Binomial degree distribution ® Sparsity Pattern
0
\ © mean degree << number of nodes
e Scale Free Pattern

e Low clustering coefficient
o o heavy tailed degree distribution

® Assortativity Pattern
e Small average path length

o  correlation between connecting nodes

©s e Transitivity Pattern
o high ratio of closed triangles
e Small world Pattern

o small average shortest path

Real world graphs are not random
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node index

Stochastic Block Models (SBM)

e Generalized ER to created block-structured graphs

e Parameters:

O  n:number of nodes

©  B: number of blocks, disjoint sets that divide the n nodes
o P: B X B probabilities per each (and between any pairs of) block

e Generation: create an ER graph in each (within, between) block

with the corresponding probability, i.e. probability of edge depends
on the block memberships of its adjacent nodes

o pA;=1= Pb,-bj , where b; gives the block id of node i

=
Comp 599: Network Science 18 E



Stochastic Block Models (SBM) VS Real Graphs

e Each block has Binomial _ ® Sparsity Pattern

degree distribution © mean degree << number of nodes

. o e Scale Free Pattern
e Low clustering coefficient

o o heavy tailed degree distribution
® Assortativity Pattern
e Small average path length o  correlation between connecting nodes

es e Transitivity Pattern
o high ratio of closed triangles
There is degree corrected block e Small world Pattern
models, see here o small average shortest path
pA;=1)= Bernoulli(@iHijibj)
Similar to ER
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https://arxiv.org/pdf/1008.3926.pdf

Configuration model

By Mark Newman, generalizing ER to specific degree distribution
Parameters: degree sequence (can be easily sampled from any distribution)

Generation: assign slots, randomly connect them kki  kik;

. . pl = ~
Serves as a null model for community detection 7 2m—1 2m

o edges are distributed randomly given the degrees are fixed

© communities that are not formed randomly should deviate from this

REAA Y S8

node ids 11111222233334445567 14122325123734351146

Slot

Comp 599: Network Science
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Albert Barabasi Model (AB)

o Introduced in 1999, a.k.a Barab4si—Albert (BA) model
e Uses preferential attachment which gives scale-free graphs

e Parameters: BA (n,m)

Me

Tl B

L -
o n:number of nodes ;( . ‘
'. -
o0 m: average degree *74“\ A
A %, |

e Generation:
o add one node at the time, add m connections per new node if possible
o  probability of forming a connection to an existing node is proportional to its degree:

k. k.

1 1

p(i) =

Comp 599: Network Science 21



Albert Barabasi Model (AB) VS Real Graphs

e Powerlaw degree distribution e Sparsity Pattern

© mean degree << number of nodes

es
e Low clustering coefficient \. Scale Free Pattern
. o heavy tailed degree distribution

e Small average path length ® Assortativity Pattern

o  correlation between connecting nodes

U e Transitivity Pattern

o high ratio of closed triangles
e Small world Pattern

o small average shortest path

Similar to Configuration Model

Comp 599: Network Science
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Evolution Patterns of Real Graphs: beyond static patterns

. . 10 —=—Full graph 1 —=—Full graph
Looking at measures over time or as graph g % Post 93 Subgraph,no st . % [755 55 Sibaraph. nopast
10 \
grows (x-axis usually time or number of nodes) g ® )
T T8
) ) ) ) 3 3,
e.g. diameter ShI'lIlkS over time 1in many &6 & .
5
real work graphs :
1%92 1994 1996 1998 2000 2002 2004 1@92 1994 1996 1998 2000 2002
Time [years] Time [years]
(a) arXiv citation graph (b) Affiliation network
35
——Full graph °
- -Post '85 subgraph
30 -~ Post '85 subgraph, no past| 48
825 3
: g 40
20 s
2 =
g ges
g1 5
10 42
See more here: Graphs over Time: Densification Laws, Shrinking 175 1980 1985 1090 1095 2000 3500 3500 4000 4500 5000 5500 6000 6500
= Time [years] Size of the graph [number of nodes]
Diameters, and Possible Explanations
‘ (c) Patents (d) AS

0\
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https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf

Forest Fire model (FF)

e By Leskovec, 2005

e To follow evolution patterns observed in real-world graphs
o denser over time, the average degree increasing, and the diameter decreasing ambassador
e DParameters: n, p and rp

© n: number of nodes
o  p: forward burning probability
o r:backward burning probability

e (Generation:

o add anode at a time, connect the node to an ambassador, chosen uniformly at random
©  draw number of inlink and outlink from geometric distributions with means of p/(1 —p) and r/(1 —r) respectively

o the new node recursively forms (out)links to the (in & out) neighbours of every node it connects to until fire dies

Comp 599: Network Science 24




Forest Fire model (FF): properties

e Heavy-tailed degree distribution
rich get richer: older nodes have more chances to become ambassadors

O

©)

e Can resultin shrinking diameter
Which is observed in real-world networks

@)

e Densifies
newly entered node has more links to neighbours close to its ambassador

7
¥
t i
s TS AN~
1
I . i
/ . Clique-like
I
: raph
Increasing " grep
diameter 1
" Constant
Sparse 1 diameter
graph
e Decreasing
diameter

-
---------

02 04 06 08
Forward burning probability

25
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Kronecker product of matrices

Kronecker graph model

aLlB al,ZB al.mB

C A= a B a>B ... a,B

—A®B=| . .

Based on self-similarity, generate graphs recursively [Leskovec,2010] MM K& { “po S g
whole has the same shape of its part N*K x M*L

Consider a small initiator matrix, use kronecker products to get the adjacency

matrix as K, = Ki®Ki®...Ki = K_; 9K

dios 27x27 81x81

X] XI.I XI Xl.]
x oSy L] e
. X, S M o AR
3x3 % T 9xQ S S
Central node is X, ceecescesficeccenceficocaancs
(a) Graph Ki (¢) Graph K> = Ky @ K, SN RPN RN
11110 K |[K [0 ST T
1[1]1 K&K
0|11 0K K : :
- ) (a) K3 adjacency matrix (27 x 27) (b) K4 adjacency matrix (81 x 81)
(d) Adjacency matrix (e) Adjacency matrix
of K of K = K| @K, More here: https:/ /snap-stanford.github.io / cs224w-notes/ preliminaries / measuring-networks-random-graphs
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https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs

Stochastic Kronecker graph model

Stochastic Kronecker graph, initiator matrix is probabilities and edges
are drawn for the final graph with the corresponding probabilities

Vi Vo V3 Wy Vi Vo V3 Yy

v; |a-ajab|b-a|bb v, | a | b|a | b
u; U, _a__b_

v, |a-c|ad|b-c|bd v2 | c | dl]c | d

uy|lalb

v3 |ca|cb|da|db v3 | a I b|a ! b
u, | c|d —c——d—
v4 |cc|cd|dc|dd Vil | d]c | d

(a) 2 x 2 Stochastic (b) Probability matrix (c) Alternative view

Kronecker initiator Py

if all probabilities are equal in the initial matrix, this becomes

equivalent to ER

how to generate efficiently? instead of n? toss coins, we can go
hierarchal, sample graphs linearly, by considering how the probability

PH=PQP%

of P, =P RP

matrix is generated, for more detail see here

Deterministic
Kronecker

Stochastic

Real graph

Kronecker

~_
10' 10° 10° 10 ml‘o" 10' 10°
Degree Rank
e
\ .
\ S
\\‘ 10 \
\
\ |
10° o 10" 10° o 10' 10
Degree Rank
10’
10— ——
\ , ~—
£
&
\
\"\
! I\
10° De‘gl'“ 10° 10° R‘aor:k 10°
(a) Degree (b) Scree plot
distribution

Comp 599: Network Science

28

0\


https://www.youtube.com/watch?v=Xnpt8US31cQ
https://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

Kronecker graph model

the initiator matrix can be set based on real-world
data to sample similar graphs, by searching over

what matrix is more likely to give the observed

” i Kronecker
arg max . —
@ ld(f':' ’.-; RN

for more detail see here

Real graph e 7
Kronecker —=— 7

awotel o1 1

10° 10’ 102 10° 10*

In-degree, k
(a) Degree distribution
2
107 ¢ Real graph o~ ]
b Kronecker —=—

Singular value
o
|

10° 10’ 102
Rank

(c) Scree plot
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https://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf
https://www.youtube.com/watch?v=Xnpt8US31cQ

Fitting to observed graphs: more general

e Option I:
©  Measure and plot different characteristics of the observed graphs

o Tune the parameters of the model to find a close enough fit to the observed patterns

e Option 2:
o Define the likelihood of observing a graph, usually assuming edges are independent

o Use maximum likelihood to find the model parameters

generation
...... model T A ..
| Pr(G|0) |  G=(V,B)!
"""""""" T
inference

Comp 599: Network Science
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Fitting the SBM to data

Likelihood of G given Probability matrix P and partitioning b

Z(G|P,b)=| | PG —j|P,Db)
]

ijeE ij¢E hb=[00 01 1 1] =[000 011
_ P - P S -~
g(Glp’b)_‘LJ_PbibjI Il_Pble I/ \,/ \ // \\ / \
jeE  ij¢E | ) ! I '
\ £ d \ !
\_,/ \_,/ \\__//\\/

Lgooa = 0.043304. .. Lina = 0.000244 ...

. In Lgooa = —3.1395... In Liaa = —8.3178....
el SBM Af;,od red blue ﬁbad red blue
pA;=1)= Pbibj , where b; gives the block id of node i e f;g ;g by ;jg fﬁ
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Lancichinetti, Fortunato, and Radicchi (LFR) model

e Extends the configuration model

e Sample degree sequence and block sizes
from power law distributions

e Randomly assign nodes to blocks
according to sampled block sizes

e Wire nodes based on configuration model
and the sampled degree sequence

e Rewire until each node has a fixed

fraction, y, of links going outside its block

£
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