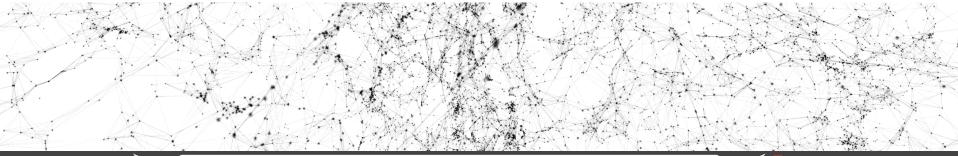
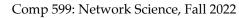


Patterns

Analysis of complex interconnected data





Quick Notes

• First assignment is released

- <u>http://www.reirab.com/Teaching/NS22/Assignment_1.pdf</u>
- Join a Group in Mycourses & Submit the assignment through Mycourses
- Late policy for assignments, 2^k% of the grade will be deducted per k days of delay.

• Use Ed discussion

• Ask questions

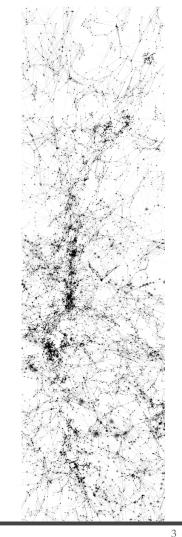
• Share tips & discuss the assignment

Deadlines

- assignment 1 due on Sep. 20th
- assignment 2 due on Oct. 4th
- assignment 3 due on Oct. 18th
- project proposal slides due on Oct. 26th
- Proposal presentations are scheduled for Oct. 27th
- project proposal due on Oct. 28th
- Reviews (first round) are due on Nov. 4th
- project proposal slides due on Nov. 9th
- Progress presentations are scheduled for Oct. 10th
- project progress report due on Nov. 11th
- Reviews (second round) are due on Nov. 19th [extended]
- project final report slides due on Nov. 28th
- Project presentations are scheduled for Nov. 29th & Dec. 1st [divided alphabetically]
- project final report due on Dec. 5th
- Reviews (third round) are due on Dec. 14th
- $\circ~$ [Optional] project revised report and rebuttal are due on Dec. 20th
- Please note that these dates are tentative and subject to change.

Outline

- Sparsity Pattern
- Scale Free Pattern
 - Power-law degree distribution
 - Fitting a power-law
 - Preferential attachment and AB model
- Assortativity Pattern
- Transitivity Pattern
 - powers of A & counting triangles
- Small world Pattern
 - Shortest path
- How to pattern?



Adjacency Matrix: marginals

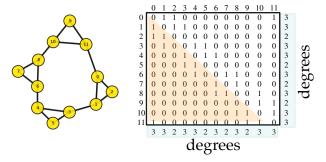
marginals of A => degree sequence

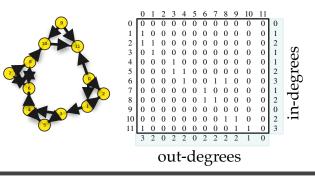
For undirected graphs: we have $A_{ij} = A_{ji} = 1$ if there is an edge between *i* and *j*, and degree of each node is:

$$d_i = \sum_j A_{ij}$$

For directed graphs, $A_{ij} = 1$ if there is an edge from node *j* to *i*, and in/out degrees of each node are:

$$d_i^{in} = \sum_j A_{ij}$$
 , $d_i^{out} = \sum_j A_{ji}$





Adjacency Matrix: marginals

marginals of A => degree sequence

For undirected graphs: we have $A_{ij} = A_{ji} = 1$ if there is an edge between *i* and *j*, and degree of each node is:

$$d_{i} = \sum_{j} A_{ij}$$

What is $\sum_{ij} A_{ij}$? $\sum d_{i} = 2E$ twice the number of edges

Mean degree:
$$\bar{d} = \frac{1}{N} \sum_{ij} A_{ij} = \frac{1}{N} \sum_{i} d_i$$

Density:
$$\rho = \frac{\sum_{ij} A_{ij}}{N(N-1)} = \frac{1}{N}\bar{d}$$

 0
 1
 2
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

N = 12, E = 16

 $\bar{d} = 2.6$

$$\rho = 0.24$$

Real-world networks are **sparse**

WWW (Stanford-Berkeley): Social networks (LinkedIn): Communication (MSNIM): Co-authorships (DBLP): Internet (AS-Skitter): Roads (California): Proteins (S. Cerevisiae):

N=319,717 N=6,946,668 N=242,720,596 N=317,080 N=1,719,037 N=1,957,027 N=1,870

mean degree << N-1 (or E << E_{max})

mean degree=9.65 mean degree=8.87 mean degree=11.1 mean degree=6.62 mean degree=14.91 mean degree=2.82 mean degree=2.39 (Source: Leskovec et al., Internet Mathematics, 2009)

From Leskovec's slides

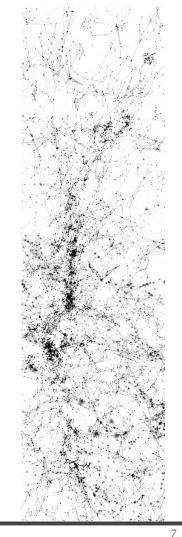
Adjacency matrix is filled with zeros!

(Density of the matrix: WWW=1.51*10⁻⁵, MSNIM= 2.27*10⁻⁸)

Implications? Use sparse representations, density is not very informative!

Outline

- Sparsity Pattern
- Scale Free Pattern
 - Power-law degree distribution
 - Fitting a power-law
 - Preferential attachment and AB model
- Assortativity Pattern
- Transitivity Pattern
 - powers of A & counting triangles
- Small world Pattern
 - Shortest path
- How to pattern?



Adjacency Matrix: marginals

marginals of A => degree sequence

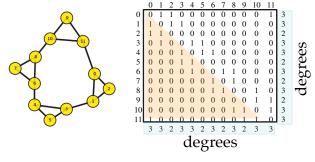
For undirected graphs: we have $A_{ij} = A_{ji} = 1$ if there is an edge between *i* and *j*, and degree of each node is:

$$d_i = \sum_j A_{ij}$$

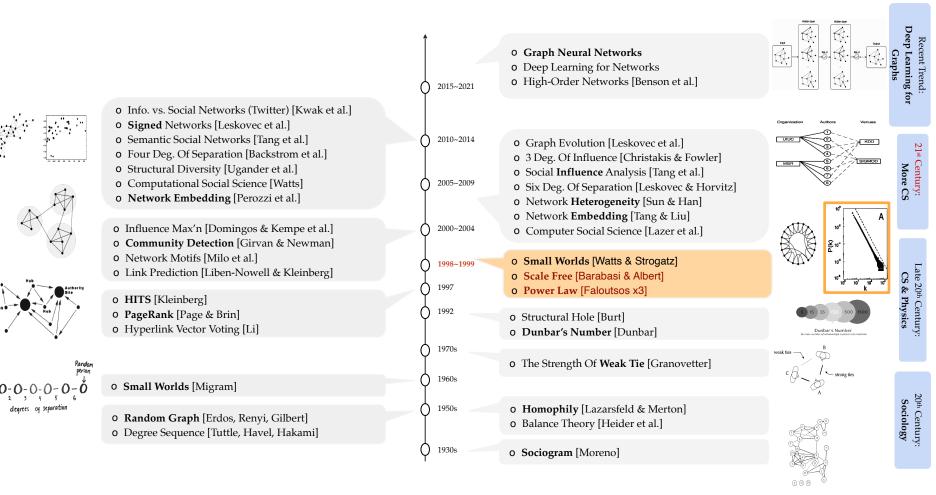
Degree distribution:

- shows how many nodes of degree *d* are in the graph
- degree sequence of all nodes \Rightarrow count & get frequencies

 $[3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3] \Rightarrow [0, 0, 4, 8]$



N = 12, E = 16

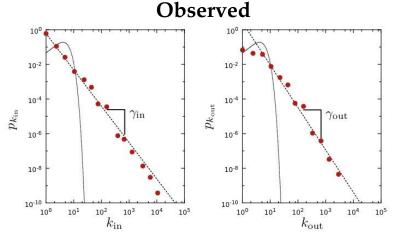


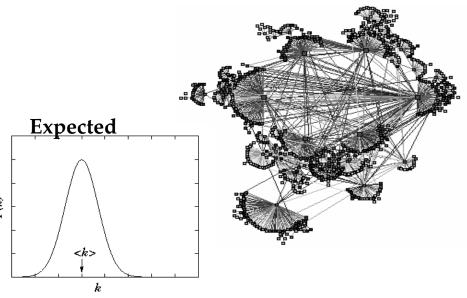
Based on Slides from Jie Tang

The first observations

Nodes: **WWW documents** Links: **URL links**

Over 3 billion documents ROBOT: collects all URL's found in a document and follows them recursivel





[HTML] Diameter of the world-wide web

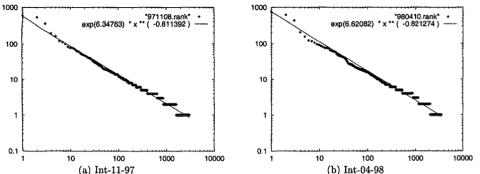
R Albert, H Jeong, AL Barabási - nature, 1999 - nature.com

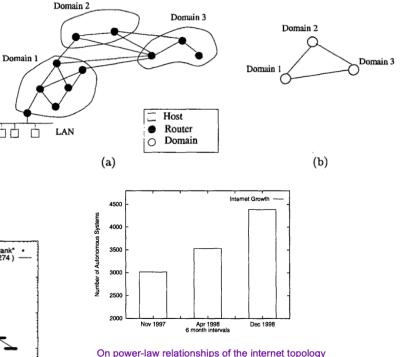
... the **diameter** of the **web**... **web** is a highly connected graph with an average **diameter** of only 19 links. The logarithmic dependence of <d> on N is important to the future potential of the **web**... $\frac{1}{2}$ Save $\frac{1}{2}$ Cite Cited by 6292 Related articles All 42 versions

The first observations

Nodes: Autonomous Systems (e.g. ISPs) Links: Routing

Around 4K nodes Graphs from data in routing tables

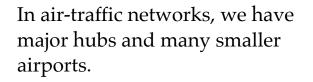


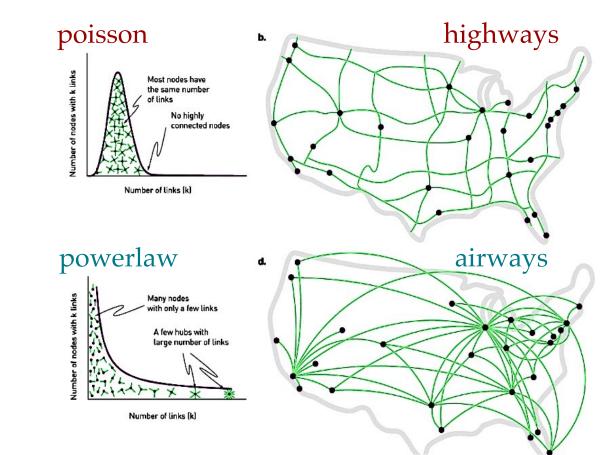


M Faloutsos, <u>P Faloutsos</u>, <u>C Faloutsos</u> - ACM SIGCOMM computer ..., 1999 - dl.acm.org Despite the apparent randomness of the Internet, we discover some surprisingly simple power-laws of the Internet topology. These power-laws hold for three snapshots of the Internet, between November 1997 and December 1998, despite a 45% growth of its size during that period. We show that our power-laws fit the real data very well resulting in correlation coefficients of 96% or higher. Our observations provide a novel perspective of the structure of the Internet. The power-laws describe concisely skewed distributions of graph ... ☆ Save 59 Cite Cited by 7479 Related articles All 66 versions ≫

Example

In highway networks, cities are of comparable connections, one has an expectation for it and each cities connections are usually close to this expectation: $\lambda = E(d) = \sigma^2(d)$





الکی ک

Power law distribution

Linear fit in log-log implies:

$$ln(p_d) = -\alpha \, ln(d) + \beta$$

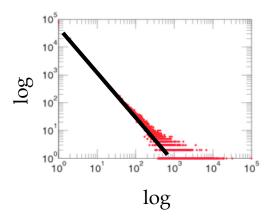
Which gives:

$$p_d = Cd^{-\alpha}$$

What is C? e^{β}

more info: <u>Power_law</u>

Provides a good fit to the linear pattern observed in log-log plots for degree distribution



Even better fit when (logarithmically) bin the range

کی ا

Powerlaws are common

- Income follows a Pareto distribution
 - few individuals earned most of the money & majority earned small amounts
 - \circ ~ in the US 1% of the population earns a disproportionate 15% of the total US income
 - 80/20 rule (<u>Pareto principle</u>): a general rule of thumb

Vilfredo Federico Damaso Pareto (1848 – 1923)

George Kingsley Zipf (1902 – 1950)

e.g. 20 percent of the code has 80 percent of the errors

• Zipf's law

High Performers 80 Percent Low Performers 20 Percent

- distribution of words ranked by their frequency in a random text corpus is approximated by a power-law distribution
- the second item occurs approximately 1/2 as often as the first, and the third item 1/3 as often as the first, and so on

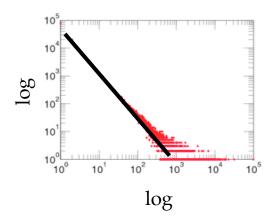
Scale free networks

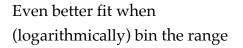
Networks with power-law degree distribution are coined as scale-free

Since power-law is scale invariance:

$$f(d) = p_d = Cd^{-\alpha}$$
$$f(\lambda d) = C(\lambda d)^{-\alpha} = \lambda^{-\alpha} f(d)$$

(invariant under all re-scalings) Note: function f is <u>scale invariance</u> iff $f(\lambda x) = \lambda^a f(x)$ for some *a* & all λ Provides a good fit to the linear pattern observed in log-log plots for degree distribution





Scale free networks are debated

Networks with power-law degree distribution are coined as scale-free

Commonly used but also debated

debate is around how test statistically

What we care about most is not the fit but the heavy-tail property

[HTML] Scale-free networks are rare

AD Broido, A Clauset - Nature communications, 2019 - nature.com

... scale-free networks 8,9, and we find that 39% of network data sets have median estimated parameters in this range. We also find that 34% of network ... the scale-free network literature. ...

[HTML] Rare and everywhere: Perspectives on scale-free networks

P Holme - Nature communications, 2019 - nature.com

... When "Scale-free networks are **rare**" appeared as a preprint in January 2018 it triggered a tremendous online activity, including articles, blog posts (by Barabási https://www.barabasilab.com/post/love-is-all-y need ...

☆ Save 50 Cite Cited by 117 Related articles All 12 versions ≫

Scale-free networks well done

<u>I Voitalov, P van der Hoorn, R van der Hofstad</u>... - Physical Review ..., 2019 - APS We bring rigor to the vibrant activity of detecting power laws in empirical degree distributions in real-world **networks**. We first provide a rigorous definition of power-law distributions, ... ☆ Save 55 Cite Cited by 129 Related articles All 11 versions ≫

How rare are power-law networks really?

I Artico, I Smolyarenko... - Proceedings of the ..., 2020 - royalsocietypublishing.org ... This means that it is impossible to detect **scale free networks**, whose power-law regime 'starts' at O(N). Every finite **network** degree distribution could potentially behave like a power-law ... ☆ Save 55 Cite Cited by 12 Related articles All 12 versions ≫

Heavy/fat/long Tailed Degree Distribution

Degree distribution is often **heavy tailed** in real world networks There are many with very small degree & nodes with very high degree

This is the key point which is commonly referred to as powerlaw distribution and scale-free property. Powerlaw is a subtype of heavy tail and other subtypes might give a closer fit

Read more on wiki if interested: <u>Heavy-tailed_distribution</u>, <u>Fat-tailed_distribution</u>, <u>Power_law</u>

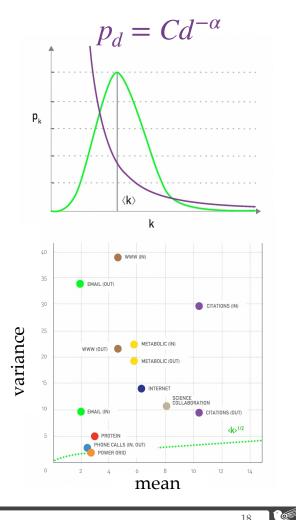
Implication? variance might not be finite, and even mean might not be well-defined

کی ا

Mean & variance for a power-law

- Well-defined mean only if $\alpha > 2$
- No finite variance if $\alpha < 3$
 - the degree of a randomly chosen node can be significantly Ο different from the mean degree

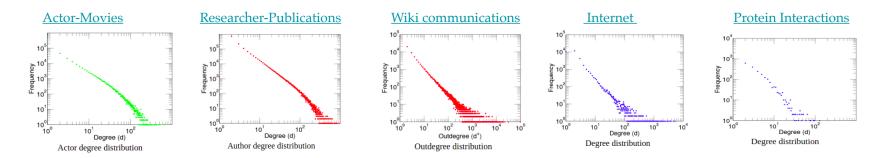
- Most real world networks are within this range
 - In the examples datasets of Barabasi book, we can see how Ο variance deviates from expected variance of same mean random network with poisson distribution (dashed green line)



Heavy/fat/long Tailed Degree Distribution

Degree distribution is often heavy tailed in real world networks There are many with very small degree & nodes with very high degree

Degree distribution is almost always plotted in log-log scale (linear scale plots often show only a single point)



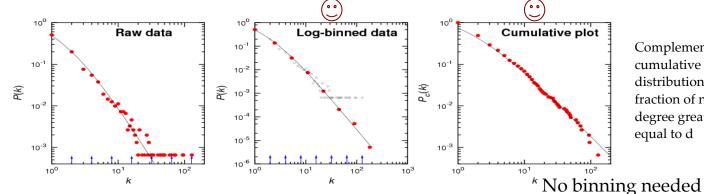
Pro tip: it is better to (logarithmically) bin the range before plotting

° (201

Fitting a power law

- Use a log-log scale & fit a line
- Use logarithmic binning
- (C)CDF is preferred which is also powerlaw \Rightarrow more accurate exponent

$$\circ \quad p(x=d) = Cd^{-\alpha} \Rightarrow p(x \le d) \propto Cd^{1-\alpha}$$



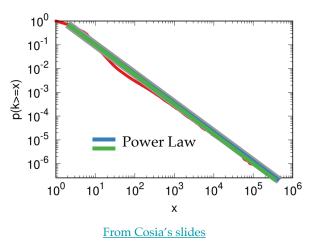
Complementary cumulative degree distribution, the fraction of nodes with degree greater than or equal to d

30 '

° (201

Fitting a power law

- Linear Fit in log-log
 - Common but debatable and might be misleading, e.g., here both distributions have a very good <u>R2</u> and p-value because of log-log scale!
- Statistical Tests
 - For example, one tool based on loglikelihood, i.e., how likely is function f to fit the data? Allows p-value estimation between two alternatives: <u>https://</u> <u>aaronclauset.github.io/powerlaws/</u>



° (201

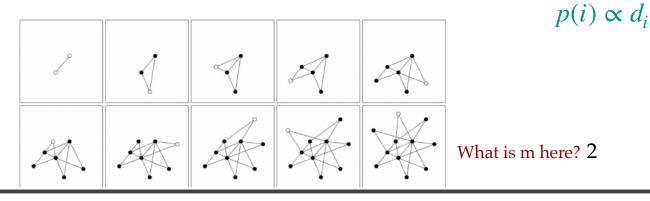
What can create a powerlaw?

Preferential Attachment

a.k.a rich get richer, accumulative advantage, Yule process, Matthew effect

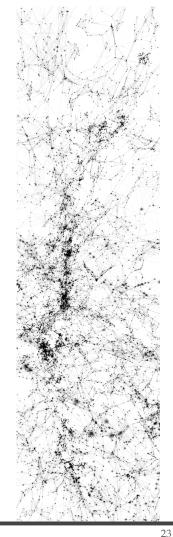
Albert Barabasi Model (AB)

- A simple graph generation process that adds one node at each iteration & connects it to m existing nodes, hence making m new connections
- the probability of forming a connection to an existing node is proportional to its degree



Outline

- Sparsity Pattern
- Scale Free Pattern
 - Power-law degree distribution
 - Fitting a power-law
 - Preferential attachment and AB model
- Assortativity Pattern
- Transitivity Pattern
 - powers of A & counting triangles
- Small world Pattern
 - Shortest path
- How to pattern?



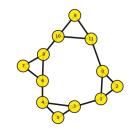
Degree Assortativity

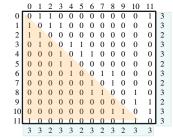
marginals of A => degree sequence

For undirected graphs:
$$d_i = \sum_j A_{ij}$$

The degree sequence gives degrees of all nodes:

What are the patterns of how node connect? Is there any relation between degree of neighbouring nodes? Do popular people mingle together?





 $(d_i, d_j) \forall (i, j) \in E$

 $\{ (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (2, 3), (2, 3), (3, 3), (3, 2), (3, 3), (3, 2), (3, 3), (3, 2), (3, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3, 3), (3, 2), (3, 3), (2, 3), (3, 3), (3, 2), (3, 3), (2, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), ($

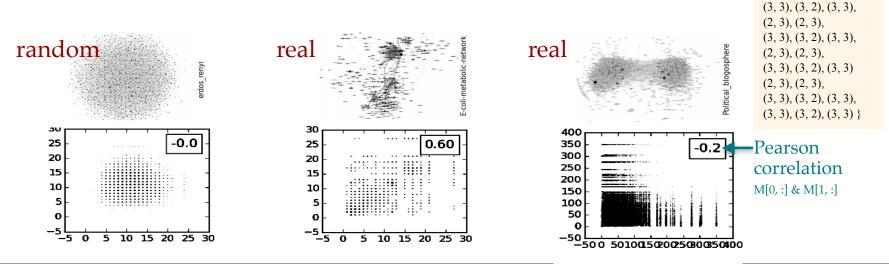
E

 $\{ (0, 1), (0, 2), (0, 11), \\ (1, 0), (1, 2), (1, 3), \\ (2, 0), (2, 1), \\ (3, 1), (3, 4), (3, 5), \\ (4, 3), (4, 5), (4, 6), \\ (5, 3), (5, 4), \\ (6, 4), (6, 7), (6, 8), \\ (7, 8), (7, 6), \\ (8, 6), (8, 7), (8, 10) \\ (9, 10), (9, 11), \\ (10, 8), (10, 9), (10, 11), \\ (11, 0), (11, 9), (11, 10) \}$

Degree Assortativity

Strong correlation between degree of connecting nodes

- For all edges, look at degrees of endpoints
 - Either nodes tend to connect to similar degree nodes or dissimilar



assortative

mixing

 $\{(3, 3), (3, 2), (3, 3), (3,$

(3, 3), (3, 2), (3, 3), (2, 3), (2, 3),

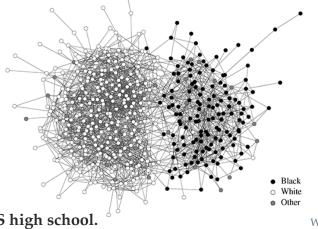
(3, 3), (3, 3), (3, 2),

 $M = (d_i, d_i) \,\forall (i, j) \in E$

Assortativity & Mixing Patterns

Strong correlation between some properties of connecting nodes

- For all edges, look at property of endpoints
 - Either nodes tend to connect to similar nodes or dissimilar



We will discuss homophily later in the course

mixing $M = (f_i, f_j) \forall (i, j) \in E$ $\begin{cases} (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3, 3), (3, 2), (3, 3), (3, 2), (3, 3), (3, 2), (3, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3, 3), (3, 2), (3, 3), (2, 3), (3, 3), (3, 2), (3, 3), (2, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3), (3, 3), (3, 3), (3, 2), (3, 3) \}$

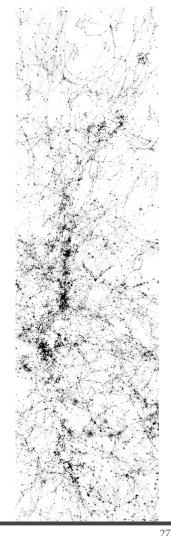
assortative

Pearson correlation M[0, :] & M[1, :]

Valid when the property is ordered

Outline

- Sparsity Pattern
- Scale Free Pattern
 - Power-law degree distribution
 - Fitting a power-law
 - Preferential attachment and AB model
- Assortativity Pattern
- Transitivity Pattern
 - powers of A & counting triangles
- Small world Pattern
 - Shortest path
- How to pattern?



Adjacency Matrix: marginals

marginals of A => degree sequence

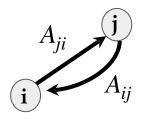
For undirected graphs: we have $A_{ij} = A_{ji} = 1$ if there is an edge between *i* and *j*, and degree of each node is:

 $d_{i} = \sum_{j} A_{ij}$ What is $\sum_{ij} A_{ij}$? $\sum d_{i} = 2E$ twice the number of edges

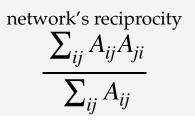


N = 12, E = 16

- A^2 : number of walks with length two
 - If undirected:
 - What is A_{ij}^2 ? number of common neighbours
 - What is A²_{ii}? number of neighbours = degree
 - What is A²_{ii} in directed graph? number of reciprocal neighbours



 $A_{ij}^2 = \sum_k A_{ik} A_{kj}$

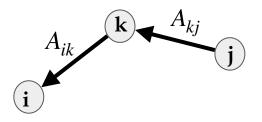


 A_{ik}

 A_{kj}

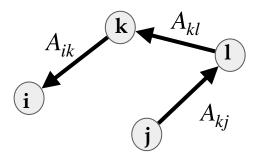
 A^2 : number of walks with length two

$$A_{ij}^2 = \sum_k A_{ik} A_{kj}$$



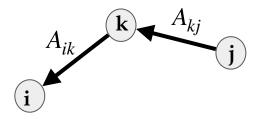
- A^3 : number of walks with length three Is it same as number of paths?
 - A **walk** is a finite or infinite sequence of edges which joins a sequence of vertice A_{lj}
 - A **trail** is a walk in whi**k** all edges are distinct.
 - A **path** is a trail in which all vertices are distinct.

https://en.wikipedia.org/wiki/Path (graph theory)#Walk, trail, path



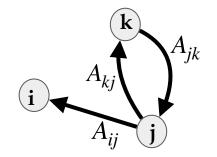
 A^2 : number of walks with length two

$$A_{ij}^2 = \sum_k A_{ik} A_{kj}$$



A³ : number of walks with length three Is it same as number of paths? No!

$$A_{ij}^3 = \sum_{kl} A_{ik} A_{kl} A_{lj}$$

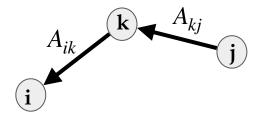


 A^2 : number of walks with length two

$$A_{ij}^2 = \sum_k A_{ik} A_{kj}$$

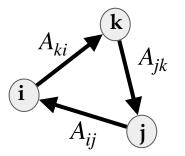
 A^3 : number of walks with length three

$$A_{ij}^3 = \sum_{kl} A_{ik} A_{kl} A_{lj}$$

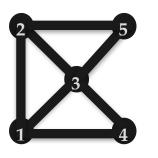


What is A_{ii}^3 if graph is undirected?

Twice the Number of Triangles



Toy Example



import networkx as nx
<pre>G = nx.random_geometric_graph(5, 0.5)</pre>
<pre>A = nx.adjacency_matrix(G).todense()</pre>
print A
$A2 = A \star A$
print A2
$A3 = A2 \star A$
print A3

- $\begin{array}{c} A & [[0 \ 1 \ 1 \ 1 \ 0] \\ & [1 \ 0 \ 1 \ 0 \ 1] \\ & [1 \ 0 \ 1 \ 0 \ 1] \\ & [1 \ 0 \ 1 \ 0 \ 0] \\ & [0 \ 1 \ 1 \ 0 \ 0] \end{array}$
- A² [[31212] [13221] common [22411] [12121]
 - [2 1 1 1 2]] degrees

 $A^3 = \begin{bmatrix} 47753 \\ 74735 \\ 177666 \end{bmatrix}$ walks of length 3 $\begin{bmatrix} 53623 \\ 35632 \end{bmatrix}$ triangles x 2

)

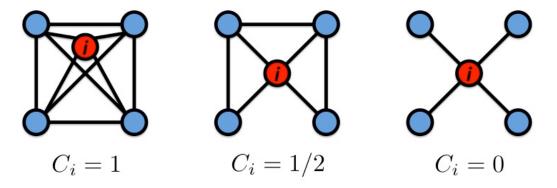
وي ال

Clustering Coefficient

Local clustering coefficient is defined per node:

$$c_i = \frac{A_{ii}^3}{d_i(d_i - 1)}$$

Shows how well connected the node's neighbourhood is:



Clustering Coefficient measures the density of triangles

Local clustering coefficient is defined per node:

$$c_i = \frac{A_{ii}^3}{d_i(d_i - 1)}$$
 , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph: $c = \frac{triangles}{triangbles}$

number of all length two walks that can be a triangle if endpoints are connected

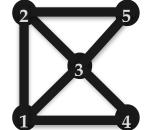
How can we measure total number of triangles in an undirected graph?

کی ا

Clustering Coefficient measures the density of triangles

Global clustering coefficient is defined for the whole graph:

 $c = \frac{triangles}{triangbles}$ number of all triangles in the graph



number of all length two walks that can be a triangle if endpoints are connected

 A^2 How can we measure total number of triangles in an undirected graph?

 $Tr(A^{3})/6$

[31212][1322]common neighbours [22411][12121] [21112]] degrees A^3 [[47753]][74735] walks of length 3 [77666] [536**2**3] [35632]] triangles x 2

° (201

Clustering Coefficient measures the density of triangles

Local clustering coefficient is defined per node:

$$c_i = \frac{A_{ii}^3}{d_i(d_i - 1)}$$
 , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph:

$$c = \frac{Tr(A^3)}{Sum(A^2) - Tr(A^2)}$$

Do they give the same results?

Clustering Coefficient measures the density of triangles

Local clustering coefficient is defined per node:

$$c_i = \frac{A_{ii}^3}{d_i(d_i - 1)}$$
 , then averaged over all nodes in the graph

Global clustering coefficient is defined for the whole graph:

$$c = \frac{Tr(A^3)}{Sum(A^2) - Tr(A^2)}$$

Do they give the same results?

$$C = \frac{1}{42} \approx 0.310$$
 They differ:

$$C = \frac{13}{42} \approx 0.310$$
 : Local average

$$C = \frac{3}{8} = 0.375$$
 : Global

Clustering Coefficient measures the density of triangles

Global clustering coefficient is defined for the whole graph:

triangles number of all triangles in the graph

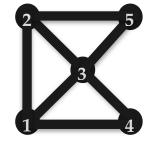
 $c = \frac{triangbles}{triangbles}$ number of all length two walks that can be a triangle if endpoints are connected

How can we measure total number of triangles in an undirected graph? $Tr(A^3)/6$ Can we compute number of triangles more efficiently?

since $Tr(A) = \sum_i \lambda_i$, and if λ is eigenvalue of A then λ^p is eigenvalue of A^p

Yes, from eigenvalues of *A* as
$$\frac{1}{6} \sum_{i} \lambda_i^3$$

We can approximate this with using only top eigenvalues since this distribution is skewed There are many works on approximating number of triangles in large graphs



```
A^{2} \begin{bmatrix} 3 & 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 & 1 \\ 2 & 2 & 4 & 1 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \end{bmatrix} \text{ degrees}
A^{3} \begin{bmatrix} 4 & 7 & 7 & 5 & 3 \\ 7 & 4 & 7 & 3 & 5 \end{bmatrix} \text{ walks of length 3}
```

[35632]] triangles x 2

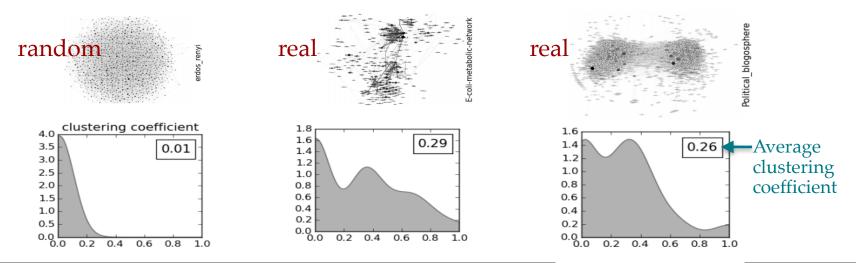
[536**2**3]

Transitivity Pattern

Real networks have a lot of triangles and strong transitivity

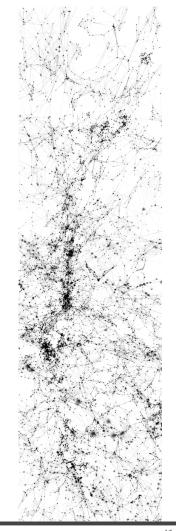
e.g. Friends of friends are friends

- High global clustering coefficient or high average local clustering coefficient
- Distribution of local clustering coefficient



Outline

- Sparsity Pattern
- Scale Free Pattern
 - Power-law degree distribution
 - Fitting a power-law
 - Preferential attachment and AB model
- Assortativity Pattern
- Transitivity Pattern
 - powers of A & counting triangles
- Small world Pattern
 - Shortest path
- How to pattern?



	network measure	scope	graph	definition	explanation
	degree	L	U	$k_i = \sum_{j=1}^n A_{ij}$	number of edges attached to ver-
	in-degree	L	D	$k_i^{\rm in} = \sum_{j=1}^n A_{ji}$	tex i number of arcs terminating at vertex i
	out-degree	L	D	$k_i^{\text{out}} = \sum_{j=1}^n A_{ij}$	number of arcs originating from vertex i
	edge count	G	U	$m = \frac{1}{2} \sum_{ij} A_{ij}$	number of edges in the network
	arc count	G	D U	$m = \sum_{ij} A_{ij}$	number of arcs in the network
	mean degree	G	U	$\langle k \rangle = 2m / n = \frac{1}{n} \sum_{i=1}^{n} k_i$	average number of connections per vertex
y	mean in- or out-degree	G	D	$\langle k^{\mathrm{in}} \rangle = \langle k^{\mathrm{out}} \rangle = 2m / n$	average number of in- or out- connections per vertex
	reciprocity	G	D	$r = \frac{1}{m} \sum_{ij} A_{ij} A_{ji}$	fraction of directed edges that are reciprocated
	reciprocity	L	D	$r_i = \frac{1}{k_i} \sum_j A_{ij} A_{ji}$	fraction of directed edges from i that are reciprocated
	clustering coefficient	G	U	$c = \frac{\sum_{ijk} A_{ij} A_{jk} A_{ki}}{\sum_{ijk} A_{ij} A_{jk}}$	the network's triangle density
l	clustering coefficient	L	U	$c_i = \sum_{jk} A_{ij} A_{jk} A_{ki} \left/ \binom{k_i}{2} \right.$	fraction of pairs of neighbors of i that are also connected
	diameter	G	U	$d = \max_{ij} \ell_{ij}$	length of longest geodesic path in an undirected network
	mean geodesic distance	G	U or D	$\ell = \frac{1}{\binom{n}{2}} \sum_{ij} \ell_{ij}$	$average \ length \ of a \ geodesic \ path$
	eccentricity	G	U or D	$\epsilon_i = \max_i \ell_{ij}$	length of longest geodesic path starting from i

Derived from the Adjacency matrix

<u>Cele</u>

From Clauset's

<u>slides</u>

Shortest Path

Single-source shortest paths

- All shortest paths for a single node can be computed with BFS when graph is simple (unweighted, undirected), time complexity is linear in number of edges, i.e., $\mathcal{O}(E)$, assuming E > V
- There are alternatives that also work for weighted graphs: Dijkstra's algorithm($\mathcal{O}(E + VlogV)$), Bellman–Ford algorithm ($\mathcal{O}(VE)$)

All-pairs shortest paths

• Floyed-Warshall algorithm: $\mathcal{O}(V^3)$

https://en.wikipedia.org/wiki/Shortest_path_problem

In real world graph V and E are in the same order so there is not much difference between algorithms.

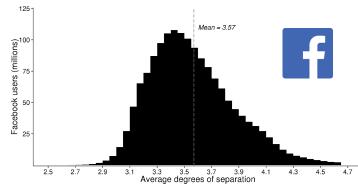
We often care about the longest & average shortest paths

Small average shortest path

Shortest path distribution is normal with small [shrinking] average in real world You can reach any node in a graph passing through few hubs This is often referred to as small world

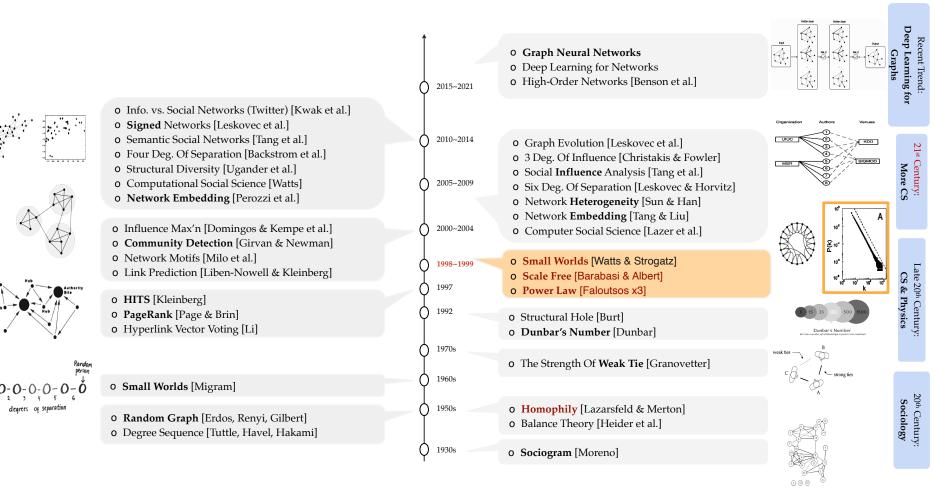
Diameter is also small {longest sp}

Letter-passing experiment, In 1967 discovered the Six Degrees of Separation



Four Degrees of Separation You are 4 hops away from anyone in the planet

Stanley Milgram (1933-1984)



Based on Slides from Jie Tang

Pattern Detection

• WHY?

- Understand the language of complex systems
- Characterize different types of networks
- Design {efficient} data structure & algorithms
- Tangled with Measurements, Anomaly detection, Modelling
- HOW?
 - What do networks have in common?
 - How to measure or characterize (nodes, communities, whole) networks?
 - What are universal patterns observed in real world networks?
 - What is structure of real-world networks?

	Network	Туре	n	m	c	s	ł	α	с	c _{ws}	r	
Social	Film actors	Undirected	449913	25516482	113.43	0.980	3.48	2.3	0.20	0.78	0.208	
-	Company directors	Undirected	7 673	55392	14.44	0.876	4.60	-	0.59	0.88	0.276	
	Math coauthorship	Undirected	253339	496489	3.92	0.822	7.57	-	0.15	0.34	0.120	
	Physics coauthorship	Undirected	52909	245300	9.27	0.838	6.19	-	0.45	0.56	0.363	
	Biology coauthorship	Undirected	1 520251	11803064	15.53	0.918	4.92	-	0.088	0.60	0.127	
	Telephone call graph	Undirected	47000000	8000000	3.16			2.1				
	Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16		
	Email address books	Directed	16881	57029	3.38	0.590	5.22	-	0.17	0.13	0.092	
	Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.029	
	Sexual contacts	Undirected	2810					3.2				
Biological	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240	
	Protein interactions	Undirected	2 115	2 240	2.12	0.689	6.80	2.4	0.072	0.071	-0.156	
	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.263	
	Freshwater food web	Directed	92	997	10.84	1.000	1.90	-	0.20	0.087	-0.326	
	Neural network	Directed	307	2 359	7.68	0.967	3.97	-	0.18	0.28	-0.226	

c: average degree s: fraction of nodes in the largest component l: average shortest path of connected nodes α : powerlaw slope C: global clustering coefficient c_{WS} : average local clustering coefficient r: degree correlation

Table 10.1 NS book

1

الکی ک

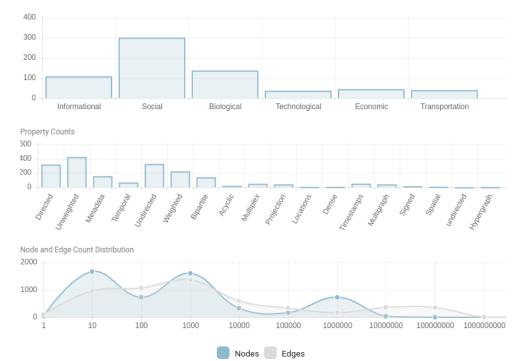
- 1. <u>Newman's collection</u>
- 2. <u>Stanford Large Network</u> <u>Dataset Collection</u>
- 3. <u>The Colorado Index of</u> <u>Complex Networks (ICON)</u>
- 4. <u>The Koblenz Network</u> <u>Collection</u>

From Clauset's slides

° (201

- 1. <u>Newman's collection</u>
- 2. <u>Stanford Large Network</u> <u>Dataset Collection</u>
- 3. <u>The Colorado Index of</u> <u>Complex Networks (ICON)</u>
- 4. <u>The Koblenz Network</u> <u>Collection</u>

Entries found: 668 Networks found: 5333



1

°6

- 1. <u>Newman's collection</u>
- 2. <u>Stanford Large Network</u> <u>Dataset Collection</u>
- 3. <u>The Colorado Index of</u> <u>Complex Networks (ICON)</u>
- 4. <u>The Koblenz Network</u>

<u>Collection</u>

Let us know in slack if you come across other large repos

KONECT currently holds 261 networks, of which

- 63 are undirected,
- 107 are directed,
- 91 are bipartite,
- 125 are unweighted,
- 90 allow multiple edges,

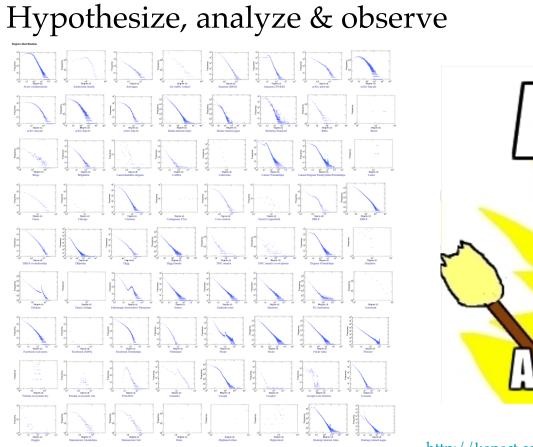
- 6 have signed edges,
- 10 have ratings as edges,
- 3 allow multiple weighted edges,
- 18 allow positive weighted edges,
- and 89 have edge arrival times.

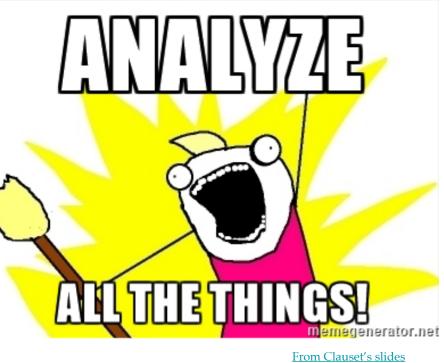
کی ا

- 1. <u>Newman's collection</u>
- 2. <u>Stanford Large Network</u> <u>Dataset Collection</u>
- 3. <u>The Colorado Index of</u> <u>Complex Networks (ICON)</u>
- 4. <u>The Koblenz Network</u> <u>Collection</u>

	Affiliation						
	в-		Actor movies	в-		American Revolution	
KONEC'	в –		Club membership	в-		Corporate Leadership	
	B=		Countries	B=	222 200	Discogs	
	в-		Flickr	в-		LiveJournal	
	в-		Occupation	в-		Orkut	
 63 	в-		Prosper.com	в-		Record labels	iges,
	в-		South African Companies	в-		Teams	
• 10	в-		YouTube				as edges,
		_					us cuges,
• 91	🔵 Animal						weighted edges,
	D+		Bison	D+		Cattle	, neighted edges,
 12 	U-		Dolphins	D-		Hens	e weighted edges,
	U+		Kangaroo	D+		Macaques	e meighted edges,
• 90	D+		Rhesus	D+	222	Sheep	e arrival times.
- 50	U=		Zebra				je univar times.
		_					
	Authorshi	р					-
	в-		arXiv cond-mat	в-		DBLP	
	в-	꾩	Github	в-		Producers	
	B= 0		Wikibooks (en)	B=	C	Wikibooks (fr)	
	B= 0		Wikinews (en)	B=	C	Wikinews (fr)	
	B= 0		Wikipedia (de)	B=	C	Wikipedia (en)	
	B= 0		Wikipedia (es)	B=	C	Wikipedia (fr)	
	B= 0	0	Wikipedia (it)	B=	C	Wikiquote (en)	
	B= 0	0	Wiktionary (de)	B=	C	Wiktionary (en)	
	B= 0	D	Wiktionary (fr)	в-		Writers	
	-						
	Citation						
	D-Q		arXiv hep-ph	D-O		arXiv hep-th	
	D-O		CiteSeer	D-	322 abc	Cora citation	
	D-O		DBLP	D- 2		US patents	
	Coauthors	hin					
		mp	arXiv astro-ph	U=	C	arXiv hep-ph	
	U= 0	0	arXiv hep-th	U=	Ū	DBLP	
	U=		DBLP co-authorship	0	0	DDLI	
	<u> </u>	_		_	_		
	Communi	cation					
	D=Q 0		Digg	D=Q	C	DNC emails	
	D=Q 0	D	Enron	D-Q		EU institution	
	D=Q 0	0	Facebook	D=Q	C	Linux kernel mailing list replies	
	D=Q 0	0	Manufacturing emails	D=Q	C	Slashdot	
	U=		U. Rovira i Virgili	D=	C	UC Irvine messages	
			Wikipedia talk Arabic		m	Wikinedia talk Chinese	

° (201

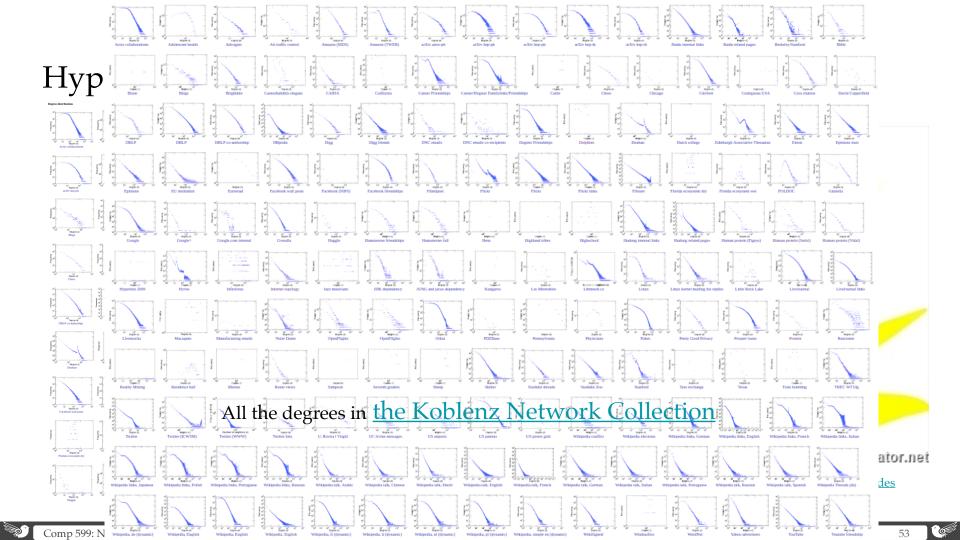




http://konect.cc/plots/degree_distribution

1

کی ا



Common benchmark repositories

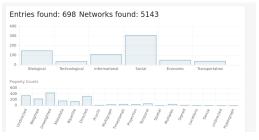
- Stanford Large Network Dataset Collection (SNAP)
 - · Social networks : online social networks, edges represent interactions between people
 - Networks with ground-truth communities : ground-truth network communities in social and information networks
 - · Communication networks : email communication networks with edges representing communication
 - · Citation networks : nodes represent papers, edges represent citations
 - Collaboration networks : nodes represent scientists, edges represent collaborations (co-authoring a paper)
 - Web graphs : nodes represent webpages and edges are hyperlinks
 - Amazon networks : nodes represent products and edges link commonly co-purchased products
 - Internet networks : nodes represent computers and edges communication
 - Road networks : nodes represent intersections and edges roads connecting the intersections
- Network Repository (<u>networkrepository</u>)

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

ANIMAL SOCIAL NETWORKS	816	INTERACTION NETWORKS	29	SCIENTIFIC COMPUTING	11
SIOLOGICAL NETWORKS	37	X INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77
BRAIN NETWORKS	116	LABELED NETWORKS	105	FACEBOOK NETWORKS	114
COLLABORATION NETWORKS	20	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12
	646	S MISCELLANEOUS NETWORKS	2668	WEB GRAPHS	36
CITATION NETWORKS	4	POWER NETWORKS	8	O DYNAMIC NETWORKS	115
ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13	C TEMPORAL REACHABILITY	38
\$ ECONOMIC NETWORKS	16	SENERATED GRAPHS	221	m BHOSLIB	36
M EMAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	TIT DIMACS	78
₩ GRAPH 500	8	ROAD NETWORKS	15	O DIMACS10	84
HETEROGENEOUS NETWORKS	15	Y RETWEET NETWORKS	34	I NON-RELATIONAL ML DATA	211

Check the visualization demo here: https://networkrepository.com/graphvis.php

• The Colorado Index of Complex Networks (ICON)



• The KONECT Project (KONECT)

Browse

- Metworks: Karate club Slashdot Zoo Twitter followers more...
- Statistics: Clustering coefficient Diameter Algebraic connectivity more...
- Plots: Degree distribution Degree assortativity plot Hop plot more...
- Categories: Online social networks Citation networks Hyperlink networks more...

Gephi, a notable visualization tool: <u>https://gephi.org/users/tutorial-visualization/</u>

More resources

• Listed on the course website

Resources

- Stanford Large Network Dataset Collection [Benchmark Datasets]
- Network Repository [Data + Interactive Visualization and Stats]
- The KONECT Project [Data + Basic Statistics]
- The Colorado Index of Complex Networks (ICON) [Varied Graph Data]
- Open Graph Benchmark [Large Graph Data]
- Networkx [Python Graph Library]
- Deep Graph Library [Benchmark Data + Graph ML Library]
- Pytorch Geometric [Benchmark Data + Graph ML Library]
- Papers with Code on Graph Related Tasks

1

° (201

Example benchmark datasets

NODES

NETWORK Internet WWW Power Grid Mobile Phone Calls Email Science Collaboration Actor Network Citation Network E. Coli Metabolism Protein Interactions

Routers
Webpages
Power plants, transformers
Subscribers
Email addresses
Scientists
Actors
Paper
Metabolites
Proteins

LINKS	
Internet connections	
Links	
Cables	
Calls	
Emails	
Co-authorship	
Co-acting	
Citations	
Chemical reactions	
Binding interactions	

LINKC

DIRECTED UNDIRECTED	N	
Undirected	192,244	609,066
Directed	325,729	1,497,134
Undirected	4,941	6,594
Directed	36,595	91,826
Directed	57,194	103,731
Undirected	23,133	93,439
Undirected	702,388	29,397,908
Directed	449,673	4,689,479
Directed	1,039	5,802
Undirected	2,018	2,930
		1

You can download these **<u>bundled</u>** from Barbasi's website, for the first assignment

کی ا