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Temporal or Dynamic Graphs

• Graphs: 
• Vectors of features + relations that form graphs among entities 

• Static graphs: 
• Nodes and edges are fixed and do not change over time 

• Dynamic graphs:  
• A graph where nodes or edges appear and/or disappear over time 
• Have both structural and temporal patterns 

• Continuous-time dynamic graph (CTDG) 
• Discrete-time dynamic graphs (DTDG)

𝒢 = (𝒱,  ℰ)𝒱 = {𝑣1, 𝑣2, …,  𝑣 𝑉 }ℰ ⊆ 𝒱  × 𝒱
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Dynamic Graph Storage Model

• Graph storage model ordered by temporal granularity: 
• Static 

• Has no temporal information 

• Edge-weighted 
• Temporal information included as labels on the edges and/or nodes of a static graph 

• Discrete 
• Represented in discrete-time intervals 
• Represented by multiple snapshots of the graph at different time intervals 

• Continuous  
• Has no temporal aggregation applied 
• Carries the most information but also the most complex
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CTDGs

• Continuous-Time Dynamic Graph (CTDG): 
•
•

• A graph snapshot:  at any point  in time 
• Obtained from a CTDG by updating  sequentially according to the 

observations  that occurred before or at .

(𝒢,  𝒪)
𝒢 → 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑔𝑟𝑎𝑝h 𝑎𝑡 𝑡0
𝒪 → 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 /𝑒𝑣𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡h𝑒 𝑓𝑜𝑟𝑚 (𝑒𝑣𝑒𝑛𝑡 𝑡𝑦𝑝𝑒,  𝑒𝑣𝑒𝑛𝑡,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) 

𝒢𝑡 𝑡 ≥ 𝑡0
𝒢

𝒪 𝑡

Fig. ref.: Temporal Graph Network
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DTDGs

• Discrete-Time Dynamic Graph (DTDG):  
• A sequence of snapshots from a dynamic graph 
• Sampled at regularly-spaced times 

• : graph snapshot at .

• A DTDG may lose information compared to CTDG!
{𝒢1,  𝒢2, …,  𝒢𝑇};  𝒢𝑡 = {𝒱𝑡,  ℰ𝑡} 𝑡

Fig. ref.: Temporal Graph Network
𝑡𝑠𝑛𝑎𝑝𝑠h𝑜𝑡 2 × 𝑡𝑠𝑛𝑎𝑝𝑠h𝑜𝑡 3 × 𝑡𝑠𝑛𝑎𝑝𝑠h𝑜𝑡𝑡0 …

…
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Prediction Problem

• General problems for dynamic graphs: 
• Node classification 
• Edge prediction 
• Graph classification 

• Settings for reasoning over dynamic graphs: 

• Interpolation: 

• Extrapolation:

time
𝑡0 𝑡1 𝒕 𝑡𝑇… …

time
𝑡0 𝑡1 𝑡𝑇 𝒕

… …
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Encoder-Decoder Framework (Hamilton et al. 2017)

𝑡0 𝑡1

Observations of a dynamic graph encoder embeddings decoder prediction

Fig. ref.: Zhu et al. 2022

?
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Encoder for Dynamic Graphs

• Aggregating Temporal Observations 
• Aggregating Static Features 
• Time as a Regularizer 
• Random Walk Encoders 
• Sequence Model Encoders 
• Dynamic Graph Neural Networks (DGNNs)
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Aggregating Temporal Observations

• Aggregating temporal observations over time 
• Generate a static graph  
• Generate embeddings by a static encoder 

• Examples: 
• Ignore the timestamps and take the sum (or union) of the entries of the adjacency 

matrices across all snapshots: 

• To give more weight to snapshots that are more recent: 

   

𝐴𝑠𝑢𝑚[𝑖][𝑗] =  ∑
𝑇

𝑡=1
𝐴𝑡[𝑖][𝑗]

𝐴𝑤𝑠𝑢𝑚[𝑖][𝑗] =
𝑇

∑
𝑡=1

𝜃𝑇−𝑡𝐴𝑡[𝑖][𝑗] 
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Aggregating Static Features

• In case of a DTDG : 
• Apply a static encoder to each snapshot 
• Aggregate the results over time 

• Example: 
• Exponentially decaying older features: 

• Fit a time-series model to the features from previous snapshots

{𝒢1,  𝒢2,  …,  𝒢𝑇}

𝑧𝑣 =  ∑
𝑇

𝑡=1
exp(−𝜃(𝑇 − 𝑡))𝑧𝑡

𝑣
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Time as a Regularizer

• Consider a DTDG : 

• Embedding of a node  at  snapshot:  

• Use a static encoder to learn an embedding function for  
• Additional constraint:  

• Smoothness constraint: for any node that has been in the graph in the previous and 
current timestamps,  should be small. 

• A common choice for the distance function is the Euclidean distance: 

{𝒢1,  𝒢2,  …,  𝒢𝑇}
𝑣 (𝑡 − 1)𝑡h 𝐸𝑀𝐵𝑡−1(𝑣) = (𝑧𝑡−1

𝑣 )
𝒢𝑡

𝑑𝑖𝑠𝑡(𝑧𝑡−1
𝑣 ,  𝑧𝑡

𝑣)

𝑑𝑖𝑠𝑡(𝑧𝑡−1
𝑣 ,  𝑧𝑡

𝑣) = | 𝑧𝑡
𝑣 − 𝑍𝑡−1

𝑣 |
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Random Walk Encoders

• Consider a DTDG : 

• Dynnode2vec (Mahdavi et al. 2018): 

• Generate random walks on  and feed them to  to get representations 

• For  snapshot: 

• Keep the valid random walks from  snapshot 

• Valid random walk: all nodes and edges are still in the graph in the snapshot 
• New random walk starts from affected nodes:  

• New nodes or nodes involved in added or deleted edges 

• Initialize  with learned parameters from  and generate representations

{𝒢1,  𝒢2,  …,  𝒢𝑇}

𝒢1 ℳ1

𝑡𝑡h (𝑡 > 1)
(𝑡 − 1)𝑡h

𝑡𝑡h 

ℳ𝑡 ℳ𝑡−1
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Sequence-Model Encoders

• RNN-based Encoders for DTDGs 
• A synchronous sequence modeling problem 
• The duration between any two consecutive items in the sequence is equal 

• RNN-based Encoders for CTDGs 
• An asynchronous sequence modeling problem
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RNN-based Encoders for DTDGs

• Consider a DTDG : 

• An encoder  that takes a static graph  and 
returns vector representation for each node. 

• Run  on each  and obtain a sequence 
 for node . 

• Feed the sequence to an RNN to produce a 
representation  containing the information from 

’s history and evolution.

{𝒢1,  𝒢2,  …,  𝒢𝑇}
ℳ 𝒢𝑡

ℳ 𝒢𝑡

𝑧1
𝑣 ,  𝑧2

𝑣 ,  …,  𝑧𝑇
𝑣 𝑣

𝑧𝑣
𝑣

Fig. ref.: Zhu et al. 2022
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RNN-based Encoders for CTDGs

• So far, mainly CTDGs with only edge addition events are considered! 

• Consist of custom RNNs that update the representations of the source and target 
nodes that form a new edge upon making a new observation. 

• Differences in these approaches: 
• How they define the embedding function 
• How they define the custom RNN 

• Staleness 
• An encoder that updates embedding whenever a new observation is made 

• The last update of embedding of  was at  

• Depending on how long it’s passed since , the  embedding may be staled!

𝑣 𝑡𝑣
𝑡𝑣 (𝑡 − 𝑡𝑣) 𝑣
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Dynamic Graph Neural Networks (DGNNs)

• A neural network architecture that: 
• The aggregation of neighboring node features is part of the NN architecture. 
• Encodes both structural and temporal patterns in dynamic graphs 
• Structural patterns encoding:  

• Graph Neural Network (GNN) 

• Temporal patterns encoding: a time-series module like: 
• RNN or positional attention
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Discrete DGNNs

• Advantage:  
• Static graph model can be used on each snapshot 

• Combines a time-series model with a GNN 

• Consider a DTDG : 

• GNN is used to encode each graph snapshot 

•  (the RNN or self-attention) encodes across the snapshots

{𝒢1,  𝒢2,  …,  𝒢𝑇}
𝑍𝑡 = 𝐺𝑁𝑁(𝒢𝑡)
𝐻𝑡 = 𝑓(𝐻𝑡−1,  𝑍𝑡)   𝑓𝑜𝑟 𝑖 ∈ [1, 𝑛]

𝑓
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Discrete DGNNs: Stacked DGNNs

Fig. ref.: Skarding et al. 2021

Stacked DGNN structure from Manessi et al. 2020. 
The graph convolution layer (GC) encodes the graph structure in each snapshot while the LSTMs encode temporal patterns. 
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Discrete DGNNs: Integrated DGNNs

Integrated DGNN structure of EvolveGCN  from Pareja et al. 2020.  
The EGCU-O layer constitutes the GC and the W-LSTM which is used to initialize the weights of the GC.

Fig. ref.: Skarding et al. 2021
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Continuous DGNNs

• There are three DGNN approaches to CTDGs: 
1. RNN-based Models 

• Use RNNs to maintain node embeddings in a continuous fashion 
• The embeddings of the affected nodes are updated as soon as there is an event  
 ! The embeddings stay up to date continuously

Fig. ref.: Kumar, Srijan, Xikun Zhang, and Jure Leskovec. "Predicting 
Dynamic Embedding Trajectory in Temporal Interaction Networks." 
In Proceedings of the 25th ACM SIGKDD international conference on 
knowledge discovery & data mining, pp. 1269-1278. 2019. 23
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Continuous DGNNs

• There are three DGNN approaches to CTDGs: 
2. Temporal Point Process (TPP)-based Models 

• Know-Evolve (Trivedi et al. 2017) 
• Models an interaction network by parametrizing a TPP by a modified RNN 

• DyRep  (Trivedi et al. 2019) 
•  Uses a TPP model which is parameterized by a recurrent architecture 

3. Time Embedding Approaches 
• Rely on time embedding methods; e.g., Time2vec (Kazemi et al. 2019) 
• Time embedding is a positional encoding focused on encoding temporal patterns 

• Aim at capturing temporal time difference  ! capture inter-event time𝑡𝑖 − 𝑡𝑗
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Decoders for Dynamic Graphs

• Time-Predicting Decoders: 

• Time-Conditioned Decoders:

time
𝑡0 𝑡1 𝑡𝑇…

time
𝑡0 𝑡1 𝑡𝑇 𝒕

… …

…

When?!

What?!
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Time-Predicting Decoders

• For extrapolation or interpolation 
• In extrapolation: 

• Predict when an event will happen 

• In interpolation: 
• Predict a missing timestamp

time
𝑡0 𝑡1 𝑡𝑇…

…

When?!
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Time-Conditioned Decoders

• Goal:  
• To make predictions for specific timestamps 

• For extrapolation or interpolation 
• In extrapolation: 

• E.g., who will be the CEO of Apple two years from now? 

• In interpolation: 
• E.g., who was the CEO of Apple at a specific time in the past?

time
𝑡0 𝑡1 𝑡𝑇 𝒕

… …

What?!
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Dynamic Graph Learning Challenges (You et al. 2022)

• Limitation of model design 
• Skip-connections, batch normalization, and edge embedding are beneficial for 

GNN message passing but unexplored for DGNNs 
• Start from a mature static GNN and adapt it to dynamic graphs 

• Limitation of evaluation setting 
• Existing literature ignores the evolving nature of data and models 

• Overestimate the model performance given the presence of long-term pattern changes 
• Models do not update within the time span of evaluation ! and get stale over time! 

• Limitation of training strategies 
• Mostly require keeping the entire graph in GPU memory! 
• Thus, DGNNs are often evaluated on small networks
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An Application: Dynamic Link Prediction

• Learning on dynamic graphs is challenging: 
• Several evolving elements: node/edge attributes, graph structure, … 

• One important task: dynamic link prediction 
• Given a timestamped stream of edges: 

• Objective:  
• Predicting the existence of an edge between a pair of nodes in the future 

• Remarkable observation:  
• SOTA methods have near-perfect performance for dynamic link prediction!

𝐺 = {(𝑠1,  𝑑1, 𝑡1),  (𝑠2, 𝑑2, 𝑡2),  …};                          0 ≤ 𝑡1 ≤ 𝑡2 ≤  … ≤ 𝑇
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Dynamic Link Prediction Challenges (Poursafaei et al. 2022)

• Limited domain diversity 
• Existing datasets are mostly social interaction networks. 
• Networks across different domain exhibit a diverse set of properties. 
• It is necessary to test dynamic link prediction in various domains. 

• Easy negative edges 
• Positive examples correspond to the actual links. 
• Edges that have never been seen previously are easy negative edges. 
• It’s important to evaluate methods on different sets of negative samples! 

• Memorization works well! 
• Making predictions based on seen edges achieves high performance!
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Understanding Dynamic Graph Datasets

• How to characterize dynamic graph datasets? 
• By statistics presented in a table?! 

• But…  
“a picture is worth a thousand words”!
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Dynamic Graphs: Temporal Evolutionary Pattern

Reddit MOOC

US Legis. UN Trade

repeated new

TEA Plots 
• Temporal Edge Appearance (TEA) 

• Repeated vs. new edges 
• High variance in temporal 

evolutionary patterns. 
• A simple memorization approach: 

• Good for repeated edges. 
• Bad for new edges. 
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Dynamic Graphs: Consistency of Edge Repeats

Reddit MOOC

US Legis. UN Trade

TET Plots 
• Temporal Edge Traffic (TET) 
• Recurrence pattern of edges over time 
• A simple memorization approach: 

• Positive transductive edges 
✓ Consistent recurrence  

⤬ Positive inductive edges
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EdgeBank: A Baseline for Dynamic Link Prediction

• A pure memorization-based approach: A bank of observed edges 
• Two memory update strategies: 

•  ! stores all observed edges
•  ! only remembers edges from a fixed time window

✅ Good for edges with frequent reoccurrence pattern 

❌ Bad for : 
• An unseen positive edge 
• A previously seen negative edge

𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘∞

𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘𝑡𝑤
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Revisiting Negative Sampling in Dynamic Graphs

• Link prediction: modeled as a binary classification problem 
• We only have positive samples! 
• Negative Sampling (NS) is needed to train/evaluate the models. 

• Random negative sampling: The standard negative sampling strategy 
⤬ No collision checking 
⤬ No reoccurring edges  

• Historical negative sampling 
• Inductive negative sampling

Eall

Etrain

U

Random NS

Eall

Etrain

U

Inductive NS

Eall

Etrain

U

Historical NS

NS

NS

NS
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Performance Evaluation

Standard random NS.

Historical NS. Inductive NS.

• Inconsistency in ranking among 
methods across datasets. 

• Memorization baselines are on 
par with SOTAs.

• A clear gap between SOTAs & EdgeBank. 
• The ranking of the models changes.
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• A link to the paper: 
• https://arxiv.org/pdf/2207.10128.pdf 

• Code repository: 
• https://github.com/fpour/DGB 

• All datasets are hosted online: 
• https://zenodo.org/record/7008205#.Y03Qqi8r1hC 

• Please feel free to reach out for any question or discussion… 😊
• ✉ ! farimah.poursafaei@mila.quebec 
• Or on slack!

40
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Conclusion

• Preliminaries of dynamic/temporal graphs 
• Dynamic graph storage model 
• Continuous-time vs. discrete-time dynamic graphs 
• Prediction problem: interpolation vs. extrapolation 
• Encoder-decoder framework 
• Encoders for dynamic graphs: 

• Aggregating Temporal Observations 
• Aggregating Static Features 
• Time as a Regularizer 
• Random Walk Encoders 
• Sequence Model Encoders 
• Dynamic Graph Neural Networks (DGNNs)
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Conclusion

• Decoders for dynamic graphs 
• Time-predicting decoders 
• Time-conditioned decoders 

• Dynamic graph learning challenges 
• An application: dynamic link prediction 

• Towards better evaluation for dynamic link prediction 
• Limited domain diversity 
• Easy negatives 
• Memorization works well
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Thank you!
Any question?
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