Graph Representation

Analysis of complex interconnected data

Comp 599: Network Science, Fall 2021



Quick Notes

e Third assignment is due on Oct 18th

o Submit 2 files (report.pdf, code.zip) as a Group (pairs or two or individual) in Mycourses

® Tue., Oct. 19, 2021: Project Proposal Presentations \\\\
o \/\/hg & What: introduction and Motivation, Related Work, Problem Definition, Dataset Description N @r
"
o Writeup: 2 pages, due Oct 20th [8pt] A
Deadlines

o Presentation: 2 mins (2-3 slides), slides due Oct 18th [2pt]

o assignment 1 due on Sep. 20th
o assignment 2 due on Oct. 4th
. . . H ° a55|gnment 3 due on Oct. 18th
o Email the slides to the course email, use Google Slides B e
o project proposal due on Oct. 20th
. . oy o Reviews (first round) due on Oct. 27th
o  We will merge them all together, and you will go over it in cla - project proposal sides due on Nov. 3rd
o project progress report due on Nov. 5th
o Reviews (second round) due on Nov. 12th
i o project final report slides due on Nov. 29th
® An U q U eStIO n S? ° {)ro}ect final re:)on due on Dec. 7th
o Reviews (third round) due on Dec. 14th
o project revised report and rebuttal due on Dec. 20th
o note: dates are tentative, subject to change
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Common prediction tasks

People in the Higher Education industry you may know See all

e Link Prediction | @ @ 1 rg‘

*

Eric Xing Le Song Ryan (Yunwei) Li Mahdi Tavakoli
Founder and CEO, Chief Associate Director, Professor at University Professor (Robotics) at
Scientist at Petuum, ... Center for Machine... of Alberta, Editor-in... the University of Alberta
@D 10 mutual connections @D 13 mutual connections E University of Alberta @D 19 mutual connections
‘ Connect | ‘ Connect ‘ ‘ Connect ‘ ‘ Connect ‘
| b& ‘g
4‘ . A
Majid Khabbazian Alireza Bayat Min Xu Masoud Ardakani
Associate Professor at Professor at University Assistant Research Professor of Electrical
N I C | . f . . University of Alberta of Alberta Professor at Carnegi... Engineering (Universi..
. O e O S S I | C O t I O n @D 9 mutual connections B University of Alberta @D 13 mutual connections @ 14 mutual connections
Connect | ‘ Connect ‘ ‘ Connect ‘ ‘ Connect
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Common prediction tasks

e Link Prediction

e Node Classification )
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Graph Representation Learning

. deep learning
reinforcement learning
representation learnin
graph neural networl
L4 L4 meta learning
. . . . robustness
e Link Prediction
. self supervised learnin
’ generalizatiol
unsuperVised learning
interpretability
few shot learning
L4 transfer learning
contrastive learnin

. generative adversarial networ
® oae Classitication:. atural fanguage processin
deep reinforcement learnin
federated learning
adversarial robustness
neural architecture search
data augmentation
generafive models
£ H . continual learning
o Gra assitication cbmpiter Viion
. optimization
regularization
machine learnin

o . gal
variational inference

7 Node classification adversarial training
z; = f(h;) X transformers
1= J\e semi supervised learnin

eep neural networ]
. exploration
disentanglement
adversarial examples
multi task learning
classification
g ’ " knowledge distillation
) Graph classification . transformer
Z _ h convolutional neural network
zg = [ (69,(1; :) image classification
i attention
uncertainty estimation
variational autoencoders
generative m%dﬂ
e

deep learning theorK —
recurrent neural hetwor
pruning e

1
A

Inputs Latents

(X,A) (H,A)

Link prediction

S
Y| z;; = f(hi, hy,ei;) 100 150 200

o
a
o

Image form https://www.youtube.com/watch?v=uF53xsT7mjc, also recommended to watch: https://www.youtube.com/watch?v=8owQOBFAHwW7E
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https://www.youtube.com/watch?v=uF53xsT7mjc
https://www.youtube.com/watch?v=8owQBFAHw7E

Graph Representation

What are the ways that we can represent
graphs or nodes in a graph?
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Graph Representation

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix. A € {0, 1}N><N

h: =10,0,0,0,0,0,0,0,1,1,0,1]"

How can we compute number of common
neighbors of two nodes with this?
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Graph Representation

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix. A € {0, 1}N><N

h: =10,0,0,0,0,0,0,0,1,1,0,1]"

How can we compute number of common
neighbors of two nodes with this? h;r hj

How else to represent graphs/nodes?
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Graph Representation

What are the ways that we can represent

graphs or nodes in a graph?

Adjacency matrix. A € {0, 1}N><N

h: =10,0,0,0,0,0,0,0,1,1,0,1]"

10

11

How can we compute number of common

neighbors of two nodes with this? h;r hj

How else to represent graphs/nodes?
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Graph Representation

What are the ways that we can represent
graphs or nodes in a graph? SrIVITIIIIT

01100000000 1]
101100000000
11000000000 0
01001100000 0
00010110000 0
00011 00000 0
6100001 01100 0
T 7100000
h; = [0,0,0,0,0,0,0,0,1,1,0,1] fpoooo
7 YRR B B B B Ed i B B B 9 00
10
ll_

Adjacency matrix. A € {0, 1}N><N

oo W N =

oo © OO

0 0
00
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o
= -=o O o
o=~ o
S | =

How can we compute number of common
neighbors of two nodes with this? h;r hj

How else to represent graphs/nodes?  Laplacian, k-smallest nontrivial eigenvectors of
Graph Laplacian a.k.a. Laplacian eigenmaps (LE)
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Graph Representation

embed the graph in vector space: G N Rnx d

i.e. map each node to a vector: hz 1€ G — Rd

- distance in the embedded space = link prediction
- decision boundaries in the embedded space = node classification

bl L ! 5 3
[ ] 5 -06 Py o 4 5 2
n =il e * = 1 » ® ©
e ® e ® @ $ ol : 2| @ = . . 1 & » v =
e e = 2 s o 1 ® J*® 5
[ ‘. b ¥ -12 :. 0 i UB . o 3 : 8 oa ©
L . - —14 1 ® 1 y
] o ® i 5 e © 9 o® -
- L SR X ] » i u
10 -4 3
2 s 3 2 1 0 1 2 3 4 00 05 10 15 20 25
(a) Output: DeepWalk (e) Output: LE (f) Output: SVD

See A Tutorial on Network Embeddings, 2018
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https://arxiv.org/pdf/1808.02590.pdf

What is a good representation?

Representation for node i hz ) “ G — Rd
Preserves the edge structure based on cross-entropy loss:
> logo(hihy)+ Y log(l—a(hfhy))
(2.7)EeE (i,j)¢E
This can be trained unsupervised, and puts connected nodes closeby

Deepwalk, node2vec and LINE redefine this based on nodes that co-occur in a
(short) random walk

slides based on https://petar-v.com/talks/GNN-Wednesdau.pdf
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https://petar-v.com/talks/GNN-Wednesday.pdf

An Encoder-Decoder Perspectiv-

Encoder gives low dimensional embedding that summarizes the graph _—ENG(u)

. . . \ oZv
position and structure in local neighbourhood <\ /"\ encode nodes i
Decoder reconstructs this neighbourhood given the embedding of the ENC(v)

original network embedding space
node
encode node w _ decode neiahborhood '
[
]
B
Zy
ENC - V \ Rd i (embedding) DEC - Rd % Rd s R—I— .
O
i,j https://www.cs.mcgill.ca/~wlh/arl _book/files/GRL Book-Chapter 3-Node Embeddings.pdf
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

A summary of shallow embedding algorithms

Method Decoder Similarity measure Loss function

Lap. Eigenmaps ||z, — 2,]|3 general DEC(Zy, Zy) - S{u, v]

learn embeddings for each node such that the inner product between the learned embedding
vectors approximates some deterministic measure of node similarity

gives identical to the solution for spectral clustering, i.e. d smallest eigenvectors
of the Laplacian

https://www.cs.mcqill.ca/~wlh/grl _book/files/GRL Book-Chapter 3-Node Embeddings.pdf
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

A summary of shallow embedding algorithms

Method Decoder Similarity measure Loss function
: o 112 ;
Lap' Elgenmaps HZU - ZU“? general DEC(Z“’ZU) S[u’ U] 9 matrix-factorization
Graph Fact. Zy, Zo A[U, U] |DEC(2Zy, Zy) — S[Ua U]||2
GraRep z: Zi Alu,v),...,A*[u,v]  ||DEC(2y,2,) — Slu,v]||2 |£~12Z" -S]5,
HOPE z. Z, general IDEC(2u, Zy) — S[u, v]||3

learn embeddings for each node such that the inner product between the learned
embedding vectors approximates some deterministic measure of node similarity

Deterministic measure of similarity = stochastic measure of neighbourhood overlap

https://www.cs.mcqill.ca/~wlh/grl _book/files/GRL Book-Chapter 3-Node Embeddings.pdf
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

A summary of shallow embedding algorithms

Method Decoder Similarity measure Loss function
Lap. Eigenmaps ||z, — 2|3 general DEC(Zy, Zv) - S{u, v]
Graph Fact. Z, Zy Alu,v] |IDEC(2y, Z,) — S[u, v]||2
GraRep z: Z Alu,v],...,A¥[u,v] |DEC(Zy,2,) — S[u, v]||2
HOPE Z, Zy general |IDEC(2y, 2,) — S[u, v]||3
DeepWalk e Z:TZk pg(v|u) —S[u, v]log(DEC(2y, Zy))
keVy

node2vec T pg(v|u) (biased)  —Slu,v]log(DEC(Zy,2y))

2 key €%u Tk

node embeddings are optimized so that two nodes have similar embeddings
if they tend to co-occur on short random walks over the graph
Similarity is probability of visiting v on a fixed length random walk from u

https://www.cs.mcqill.ca/~wlh/grl _book/files/GRL Book-Chapter 3-Node Embeddings.pdf

matrix-factorization

L~|ZZ" -S|3,
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Deepwalk

-
1 ~ 2 ) 3
Sampling O’Q’O’O Training Computing
p random skip-gram embeddings

walks . model

Phases of DeepWalk approach

e 32 to 64 random walks from each node of a length of about 40 steps

e Random walks as sentences, maximize probability of predicting neighbour nodes

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007

https.//arxiv.org/pdf/1403.6652.pdf

\ 4
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https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf

Node2vec

Similar to Deepwalk but interpolates between random walks that discover larger
neighborhood (Q), and those that stay local (P)

Negative samping

https://www.cs.mcqill.ca/~wlh/grl _book/files/GRL Book-Chapter 3-Node Embeddings.pdf
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https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Node2Vec Different ways to embed
Embedding so that nodes

e inthe same cluster are placed close together (DFS)
e with similar roles are placed close together (BFS)

Community structure Structural equivalence / roles

e} l.‘..‘()‘..~‘ ' : o
) o.‘ bo o
0.."' o...--. ...

https://arxiv.org/pdf/1607.00653.pdf
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https://arxiv.org/pdf/1607.00653.pdf

Limitations of Shallow Embeddings

No parameter sharing = less scalable
lgnores features or attributes

Inherently transductive = can not process unseen nodes

Read more:

A Tutorial on Network Embeddings, 2018 &
Representation Learning on Graphs, 2017 &
GLR book’s chapter on node embedding, 2020
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https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

From Shallow Embeddings to Graph Neural Nets

e No parameter sharing = less scalable
e Ignores features or attributes
e Inherently transductive = can not process unseen nodes

optimized a unique embedding vector for each node = more complex encoder
models, graph neural networks which work based on feature propagation

f(X, A)

e Number of parameters doesn't grow with graph size but feature dimension
e Naturally incorporates node features
e Inherently inductive = infer embedding for unseen nodes

Watch https://www.cs.mcqill.ca/~wlh/arl _book/files/hamilton _arl talk.mp4
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Neural Networks - Short Intro

e Linear regression: f(x) =w Ty = deﬁd .

p= 1 25 s e *

w = [wy,w1,..., wp|"

Model: linear combination of features and weights 0
Learning: find the weights that minimize a cost function

Cost: sum of losses per individual point 2
J(w) — %ZnNzl (y(n) e wTw(n)>

w* = argmin,, J(w)

III): zgl)’ :Bgl), cee ZL'(DI) one instance
(2)
i J ‘ e : : Vs : c RNXD
4 ™) ) (N)
z) Ly 'y &Ly » "*°y Tp

one feature
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Neural Networks - Short Intro

e Linear regression: f(z)=w 'z = Z W4T g
d

e More expressive, use nonlinear bases: f(z) =w'® = E WP ()
o Transform the input with nonlinearities then apply linear model 4

curve-fitting using nonlinear Gaussian bases

Example: perfect nonlinear fit with linear

model and 10 nonlinear Gaussian bases
the green curve (our fit)

is the sum of these

> scaled Gaussian bases

i ——""7 plus the intercept. Each

B intercept basis is scaled by the
corresponding weight

-~ = ground truth

0 2 a 6 8 10

23
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Neural Networks - Short Intro

e Linear regression: f(z)=w 'z = Z W4T g
d

e More expressive: use nonlinear bases: f(z) =w'® = Z WP ()
d

Yy curve-fitting using nonlinear Gaussian bases
3
2
wy W n
W2
0
& @ ... Om y
= the green curve (our fit)
Gaussian bases -2 . is the sum of these
9 o — 7 scaled Gaussian bases
_ (e—mg) i reciat ————"7 plus the intercept. Each
% ¢ k (aj) = e 52 -4 intercept basis is scaled by the
T T corresponding weight
0 2 4 o 6 8 10

Comp 599: Network Science
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Neural Networks - Short Intro

e Linear regression: f(z)=w 'z = Z W4T g
d

e More expressive: use nonlinear bases: f(z) =w ' = Z wWapg()
d

e Neural networks use adaptive nonlinear bas
o Learning the (weights of) nonlinear bases

r € RP*!
g =g(Wh(V z)) v € RMD
non-linearities are applied elementwise Z = h(Vz) € RM
W € ROM

y € RCX

gc =g (Zm Wc,m/7(zd Vm,dwd))
I I
o The most common non-linearity

Ieaky V) () = max(0,z) + v min(0, z)

SN

output (¥ 92

hidden units (2 %2

v (XS

input (®1 2

But whatis a neural network?

Tp

1

Comp 599: Network Science
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https://www.youtube.com/watch?v=aircAruvnKk

Neural Networks - Short Intro
e Linear regression: f(z)=w 'z = Z W4T g
d
e More expressive: use nonlinear bases: f(z) =w ' = Z wWapg()
d

e Deep networks stack/compose layers of adaptive

. 7 Y2 Jc
nonlinear bases

: - wis

PO . @
wiz

zl zz see M
B%<l wit

zl zz LR xD

But what is a neural network? A =p (W{l}z{l—l})
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https://www.youtube.com/watch?v=aircAruvnKk

Neural Networks - Short Intro

e Linear regression: f(z)=w 'z = Z W4T g
d

e More expressive: use nonlinear bases: f(z) =w ' = Z wWapg()
d

e Deep networks stack/compose layers of adaptive
nonlinear bases

Can we feed an adjacency matrix to this? E.g. flatten
the matrix into a vector of lengthn

But whatis a neural network?

7 U2 ... @@=
: : Cow
¢

L

7 w2
o © vee M

B%<l with

Zq T e Zp

A = (W L1

Comp 599: Network Science
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Neural Networks - Short Intro
e Linear regression: f(z)=w 'z = Z W4T g
d T
e More expressive: use nonlinear bases: f(x) =w & = Z wWapg()
d

e Deep networks stack/compose layers of adaptive

. 7 ) ... @@=
nonlinear bases :

. . * W'{:“}

. . . @ & ... &
Can we feed an adjacency matrix to this? Not the best _ N
. . ; w 2

choice 2 0 a
B%<l with

£ T2 cee <D

But what is a neural network? A = p (W{l}z{l—l})
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Permutation invariance

function f that takes an adjacency —
matrix A as input should be: STITI AL T

ofo 1. 10000000 0 1]

e Permutation Invariance clo1oo01ldooonle

4 100010141 00000

f(PAPT) = f(A) ()it

00

coo
o

olococop

— >

— =

o =

=

or
e Permutation Equivariance
Since changing order of nodes

f(PAP") = Pf(A)
in the adjacency does not

where P is a permutation matrix that change the graph
reorders nodes

.
- oo o
o lo|o

=
o lolo
oo
(=]
o
- = oo
— o= = o
o || =
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Neural Networks - Short Intro
e Linear regression: f(z)=w 'z = Z W4T g
d T
e More expressive: use nonlinear bases: f(x) =w & = Z wWapg()
d

e Deep networks stack/compose layers of adaptive nonlinear bases
e Parameter sharing: elements of w of the same color are tied together

output output
w 5 Ra<iadPay
input input

w:[ ‘(/ ] ’r b ]

1D convolution layer

Comp 599: Network Science
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Neural Networks - Short Intro
e Linear regression: f(z)=w 'z = Z W4T g
d T
e More expressive: use nonlinear bases: f(x) =w ¢ = Z wyp ()
d

e Deep networks stack/compose layers of adaptive nonlinear bases
e Parameter sharing: elements of w of the same color are tied together

- g

2D Convolution 1D convolution layer

output

input

w=[8g , = , U]

https://cs231n.github.io/convolutional-networks
Comp 599: Network Science


https://cs231n.github.io/convolutional-networks/

Neural Networks - Short Intro
e Linear regression: f(z)=w 'z = Z W4T g
d T
e More expressive: use nonlinear bases: f(x) =w ¢ = Z wyp ()
d

e Deep networks stack/compose layers of adaptive nonlinear bases
e Parameter sharing: elements of w of the same color are tied together

- g

2D Convolution

Can we have convolution
for graphs?

https://cs231n.github.io/convolutional-networks
Comp 599: Network Science
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Graph Neural Networks

Use the local neighbourhood similar to convolution on images

Cha \C'b[)
Chd

il

Xd

Convolutional

=

X} <——Che

X;, @ ciiP(x;) P alxi,x;)v(x;)

From https:

m
my, o
h\ 4
......... Xp «—1my, Xe
) \E
/ N+
> Mg < my,
»
AAAA xe

ML’SS(IS’L’-})HSSIHS’

h; = [ (xis @ 'l,/)(X?j,Xj))

JENG

petar-v.com/talks/GNN-Wednesday.pdf
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https://petar-v.com/talks/GNN-Wednesday.pdf

Attributed Graphs f(X A)
)

If we have:

, ¢ links to 5 1, ¢ hask
A= . X = .
0, otherwise 0, otherwise

Then simple matrix multiplication of A and X, AX, gives us the number of
neighbors of a particular attribute/type for each node, i.e.

o k' column of AX shows the number of type k neighbors for all nodes,
o e.g.,number of ‘male’ friends each person has.

e i"row of AX shows the number of neighbors node i for all types,
o e.g.,number of friends 'smith’ has of each type, say male and female

Comp 599: Network Science
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Convolutional GNN >“x,,{_% =
. B

GCN (Kipf & Welling. ICLR17) o p

Convolutional

Hidden layer Hidden layer

. L oo HT = g(AH'W")

Multi-layer Graph Convolutional Network (GCN) with first-order filters. From

https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc
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https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Convolutional GNN e o

GCN (Kipf & Welling. ICLR'17) % 8

Convolutional

Hidden layer Hidden layer

s H' = p(AH'W!
<. i \é i i’ |
Bl H*' = ¢(D~3 AD~2 H'W')

Multi-layer Graph Convolutional Network (GCN) with first-order filters. From

https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc
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https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Convolutional GNN

GCN (Kipf & Welling, ICLR17)

Hidden layer Hidden layer
°
/'. / \
< 4 L G
\. -—® \ —®
®
Input " e v .
{ ] ®
'wé ! ReLU .\é‘ ReLU
\ ° ° )
AN = ISl S
SRS S
o °
o o
g [
° e °
° \ \ ° v \.

Multi-layer Graph Convolutional Network (GCN) with first-order filters.

Output

s

Convolutional

From
https://petar-v.com/talks/GNN-Wednesday.pdf

https://www.youtube.com/watch?v=uF53xsT7mjc
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https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Convolutional GNN =i .

GCN (Kipf & Welling. ICLR'17) % 8

Convolutional

0.10
*—o °
0.08 ®
® ® 0.06
Y P &« 0.04 ® o
A o ° M
@ s X X\ ~ @ 0.02 L & : 3
‘ P PSS e o %
e \ R [ ] ® 0.00}
: ® ® o®
> N L -0.02 ®
L 3 \»; o 3 \ @
® : / ® o -0.04 ®
@ @ /
\ -0.06 | ®
® ® S (2]
0083 ~0.1 0.0 0.1 0.2 0.3 0.4

X=1

3-layer with random weights (untrained!) From

https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc
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https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

\cb(, Coh
Convolutional GNN =i .

. . ) / \
GCN (Kipf & Welling, ICLR17) & "
Convolutional
L L ]
L]
0.10 - -
0.08 .. 93 e 0s e
0.06 o -
\.
0.04 ® o .
[} ceke &
0.02 ® ® .“ ‘. é * [
0.00
e® - % é
0.02 LY
0.04 ® 5 0.0 05 -1.0 =-0.5 0.0 0.5 & 4‘: -05 0.0 :
0.06} ® .. (a) Iteration 25 (b) Iteration 50 (f) Iteration 300
0083 0.1 0.0 0.1 0.2 0.3 0.4

lteration 0 = Gets better as we learn the Weights o hioe/amivora/odt /160902607 o
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https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/pdf/1609.02907.pdf

Convolutional GNN

GCN (Kipf & Welling, ICLR17)

0.90

Citeseer

.

Xd

Pubmed

0.95 0.88
0.90 0.86
0.85
0.84
0.80
> > >
3 3 % 0.82
50.70 5 50.75 g
v \ v v
b4 X < < 0.80
0.65 Vg 0.70 ¢
. 7 . i
o] B Tra!n . o5tz Tra!n . a7l Bavsd Tra!n . |
s———a Train (Residual) s———a= Train (Residual) e Train (Residual) .';
0.55 o---a Test 0.60ff ®---+ Test 0.76 ®---« Test
. +——= Test (Residual) +——= Test (Residual) : +—— Test (Residual)
0.50 0.55

2

3 4 S 6° 7
Number of layers

More layers do not help

8 9 10

2 3 4 5 6 7
Number of layers

8 9 10

2 3 4 5 6 7 8 9 10
Number of layers

From https.//arxiv.org/pdf/1609.02907.pdf
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https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/pdf/1609.02907.pdf

\(‘1, app
Attentional GNN il

GAT (Velickovic¢ et a

ICLR"18) )

compute scalar value in each edge [P
Transductive
Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
Conca[/avg % Dochalk (Pcmzzi etal., 20]4) 67.2% 43.2% 65.3%
> h) ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7+05% — 78.8 = 0.3%
GCN-64 814+05% 709 +0.5% 79.0=+0.3%
GAT (ours) 83.0+0.7% 725+07% 79.0+03%
From

https://petar-v.com/talks/GNN-Wednesday.pdf
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https://arxiv.org/pdf/1710.10903.pdf
https://petar-v.com/talks/GNN-Wednesday.pdf

Resources: Libraries and Datasets

OGRB O . X

Ogb stanford.eduy . Py-I;e(ng;eCtrl;I m SP ektral

github.com/rustyls/pytorch geometric graphneural .network

"7+ TUDataset .

Graphlearning.io

github.com/deepmind/graph nets github. com/deepmind/jraph
https://putorch-geometric.readthedocs
_io/en/latest/modules/datasets.html
aithub.com/graphdeeplearning/benchmarking-gnns slides based on https://petar-v.com/talks/GNN-Wednesday.pdf
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https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/07_leaderboards.md
https://chrsmrrs.github.io/datasets/
http://ogb.stanford.edu
https://pytorch-geometric.readthedocs.
https://pytorch-geometric.readthedocs.
https://petar-v.com/talks/GNN-Wednesday.pdf

F(MR) — dog

F() —eat
e The most common supervised learning setup

e Learns a function that maps each input/datapoint to an output/class based on a set of
example input-output pairs, a.k.a. labelled data

e This function has parameters that are adjusted based on examples in the training set, usually
by minimizing a loss defined based on how well the model’'s output and actual outputs match

e This optimization is commonly based on gradient descent, i.e. adjusting the parameters of
model/function step by step towards where the loss is decreasing

e Evaluation: since these examples are seen by the model, we test the performance on an
hold-out, unseen test set

e Model Selection: The models often have hyperparameters that we do not learn directly but tune
them by checking different possible values and measuring the loss on the validation set

Classification - One slider

train validation test
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