
Comp 599: Network Science, Fall 2021

Graph Representation
Analysis of complex interconnected data

Comp 599: Network Science 2

● Third assignment is due on Oct 18th
○ Submit 2 files (report.pdf, code.zip) as a Group (pairs or two or individual) in Mycourses

● Tue., Oct. 19, 2021: Project Proposal Presentations

○ Why & What: Introduction and Motivation, Related Work, Problem Definition, Dataset Description

○ Writeup: 2 pages, due Oct 20th [8pt]

○ Presentation: 2 mins (2-3 slides), slides due Oct 18th [2pt]

○ Email the slides to the course email, use Google Slides

○ We will merge them all together, and you will go over it in class

● Any questions?

Quick Notes

Comp 599: Network Science 3

● Link Prediction

● Node Classification

Common prediction tasks

?

?

Comp 599: Network Science 4

● Link Prediction

● Node Classification

Common prediction tasks

?

?

Comp 599: Network Science 5

● Link Prediction:

● Node Classification:

● Graph Classification:

Graph Representation Learning

Image form https://www.youtube.com/watch?v=uF53xsT7mjc , also recommended to watch: https://www.youtube.com/watch?v=8owQBFAHw7E

https://www.youtube.com/watch?v=uF53xsT7mjc
https://www.youtube.com/watch?v=8owQBFAHw7E

Comp 599: Network Science 6

What are the ways that we can represent
graphs or nodes in a graph?

Graph Representation

Comp 599: Network Science 7

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix:

How can we compute number of common
neighbors of two nodes with this?

Graph Representation

Comp 599: Network Science 8

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix:

How can we compute number of common
neighbors of two nodes with this?

How else to represent graphs/nodes?

Graph Representation

Comp 599: Network Science 9

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix:

How can we compute number of common
neighbors of two nodes with this?

How else to represent graphs/nodes?

Graph Representation

Laplacian,

Comp 599: Network Science 10

What are the ways that we can represent
graphs or nodes in a graph?

Adjacency matrix:

How can we compute number of common
neighbors of two nodes with this?

How else to represent graphs/nodes?

Graph Representation

Laplacian, k-smallest nontrivial eigenvectors of
Graph Laplacian a.k.a. Laplacian eigenmaps (LE)

Comp 599: Network Science 11

embed the graph in vector space:

i.e. map each node to a vector:

- distance in the embedded space ⇒ link prediction
- decision boundaries in the embedded space ⇒ node classification

Graph Representation

See A Tutorial on Network Embeddings, 2018

https://arxiv.org/pdf/1808.02590.pdf

Comp 599: Network Science 12

Representation for node i:

Preserves the edge structure based on cross-entropy loss:

This can be trained unsupervised, and puts connected nodes closeby

Deepwalk, node2vec and LINE redefine this based on nodes that co-occur in a
(short) random walk

slides based on https://petar-v.com/talks/GNN-Wednesday.pdf

What is a good representation?

https://petar-v.com/talks/GNN-Wednesday.pdf

Comp 599: Network Science 13

Encoder gives low dimensional embedding that summarizes the graph
position and structure in local neighbourhood

Decoder reconstructs this neighbourhood given the embedding of the
node

An Encoder-Decoder Perspective

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 14

A summary of shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

learn embeddings for each node such that the inner product between the learned embedding
vectors approximates some deterministic measure of node similarity

gives identical to the solution for spectral clustering, i.e. d smallest eigenvectors
of the Laplacian

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 15

A summary of shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

 matrix-factorization

learn embeddings for each node such that the inner product between the learned
embedding vectors approximates some deterministic measure of node similarity

Deterministic measure of similarity ⇒ stochastic measure of neighbourhood overlap

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 16

A summary of shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

 matrix-factorization

node embeddings are optimized so that two nodes have similar embeddings
if they tend to co-occur on short random walks over the graph
Similarity is probability of visiting v on a fixed length random walk from u

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 17

● 32 to 64 random walks from each node of a length of about 40 steps
● Random walks as sentences, maximize probability of predicting neighbour nodes

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007

https://arxiv.org/pdf/1403.6652.pdf

Deepwalk

https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
https://arxiv.org/pdf/1403.6652.pdf

Comp 599: Network Science 18

Similar to Deepwalk but interpolates between random walks that discover larger
neighborhood (Q), and those that stay local (P)

Negative samping

Node2vec

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 19

Embedding so that nodes
● in the same cluster are placed close together (DFS)
● with similar roles are placed close together (BFS)

Node2Vec Different ways to embed

https://arxiv.org/pdf/1607.00653.pdf

https://arxiv.org/pdf/1607.00653.pdf

Comp 599: Network Science 20

No parameter sharing ⇒ less scalable

Ignores features or attributes

Inherently transductive ⇒ can not process unseen nodes

Limitations of Shallow Embeddings

Read more:
 A Tutorial on Network Embeddings, 2018 &
Representation Learning on Graphs, 2017 &
GLR book’s chapter on node embedding, 2020

https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Comp 599: Network Science 21

● No parameter sharing ⇒ less scalable
● Ignores features or attributes
● Inherently transductive ⇒ can not process unseen nodes

optimized a unique embedding vector for each node ⇒ more complex encoder
models, graph neural networks which work based on feature propagation

● Number of parameters doesn't grow with graph size but feature dimension
● Naturally incorporates node features
● Inherently inductive ⇒ infer embedding for unseen nodes

From Shallow Embeddings to Graph Neural Nets

Watch https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4

Comp 599: Network Science 22

● Linear regression:

Neural Networks - Short Intro

Model: linear combination of features and weights
Learning: find the weights that minimize a cost function
Cost: sum of losses per individual point

Comp 599: Network Science 23

● Linear regression:

● More expressive, use nonlinear bases:
○ Transform the input with nonlinearities then apply linear model

Neural Networks - Short Intro

Example: perfect nonlinear fit with linear
model and 10 nonlinear Gaussian bases

Comp 599: Network Science 24

● Linear regression:

● More expressive: use nonlinear bases:

Neural Networks - Short Intro

Comp 599: Network Science 25

● Linear regression:

● More expressive: use nonlinear bases:

● Neural networks use adaptive nonlinear bases
○ Learning the (weights of) nonlinear bases

○ The most common non-linearity

Neural Networks - Short Intro

But what is a neural network?

https://www.youtube.com/watch?v=aircAruvnKk

Comp 599: Network Science 26

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive
nonlinear bases

Neural Networks - Short Intro

But what is a neural network?

https://www.youtube.com/watch?v=aircAruvnKk

Comp 599: Network Science 27

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive
nonlinear bases

Can we feed an adjacency matrix to this? E.g. flatten
the matrix into a vector of length

Neural Networks - Short Intro

But what is a neural network?

https://www.youtube.com/watch?v=aircAruvnKk

Comp 599: Network Science 28

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive
nonlinear bases

Can we feed an adjacency matrix to this? Not the best
choice

Neural Networks - Short Intro

But what is a neural network?

https://www.youtube.com/watch?v=aircAruvnKk

Comp 599: Network Science 29

function f that takes an adjacency
matrix A as input should be:

● Permutation Invariance

or
● Permutation Equivariance

where P is a permutation matrix that
reorders nodes

Permutation invariance

Since changing order of nodes
in the adjacency does not
change the graph

Comp 599: Network Science 30

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive nonlinear bases
● Parameter sharing: elements of w of the same color are tied together

1D convolution layer

Neural Networks - Short Intro

Comp 599: Network Science 31

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive nonlinear bases
● Parameter sharing: elements of w of the same color are tied together

 2D Convolution 1D convolution layer

Neural Networks - Short Intro

https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/

Comp 599: Network Science 32

● Linear regression:

● More expressive: use nonlinear bases:

● Deep networks stack/compose layers of adaptive nonlinear bases
● Parameter sharing: elements of w of the same color are tied together

 2D Convolution

Neural Networks - Short Intro

https://cs231n.github.io/convolutional-networks/

Can we have convolution
for graphs?

https://cs231n.github.io/convolutional-networks/

Comp 599: Network Science 33

Use the local neighbourhood similar to convolution on images

Graph Neural Networks

From https://petar-v.com/talks/GNN-Wednesday.pdf

https://petar-v.com/talks/GNN-Wednesday.pdf

Comp 599: Network Science 34

If we have:

Then simple matrix multiplication of A and X, AX, gives us the number of
neighbors of a particular attribute/type for each node, i.e.

● kth column of AX shows the number of type k neighbors for all nodes,
○ e.g., number of ‘male’ friends each person has.

● ith row of AX shows the number of neighbors node i for all types,
○ e.g., number of friends ’smith’ has of each type, say male and female

Attributed Graphs

Comp 599: Network Science 35

GCN (Kipf & Welling, ICLR’17)

Convolutional GNN

From
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Comp 599: Network Science 36

GCN (Kipf & Welling, ICLR’17)

Convolutional GNN

From
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Comp 599: Network Science 37

GCN (Kipf & Welling, ICLR’17)

Convolutional GNN

From
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Comp 599: Network Science 38

GCN (Kipf & Welling, ICLR’17)

3-layer with random weights (untrained!)

Convolutional GNN

From
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

https://tkipf.github.io/graph-convolutional-networks/
https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.youtube.com/watch?v=uF53xsT7mjc

Comp 599: Network Science 39

GCN (Kipf & Welling, ICLR’17)

Iteration 0 ⇒ Gets better as we learn the weights

Convolutional GNN

From https://arxiv.org/pdf/1609.02907.pdf

https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/pdf/1609.02907.pdf

Comp 599: Network Science 40

GCN (Kipf & Welling, ICLR’17)

More layers do not help

Convolutional GNN

From https://arxiv.org/pdf/1609.02907.pdf

https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/pdf/1609.02907.pdf

Comp 599: Network Science 41

GAT (Veličković et al., ICLR’18)

 compute scalar value in each edge

Attentional GNN

From
https://petar-v.com/talks/GNN-Wednesday.pdf

https://arxiv.org/pdf/1710.10903.pdf
https://petar-v.com/talks/GNN-Wednesday.pdf

Comp 599: Network Science 42

Resources: Libraries and Datasets

github.com/graphdeeplearning/benchmarking-gnns

Graphlearning.io

Ogb.stanford.edu

https://pytorch-geometric.readthedocs
. io/en/latest/modules/datasets.html

slides based on https://petar-v.com/talks/GNN-Wednesday.pdf

https://github.com/graphdeeplearning/benchmarking-gnns/blob/master/docs/07_leaderboards.md
https://chrsmrrs.github.io/datasets/
http://ogb.stanford.edu
https://pytorch-geometric.readthedocs.
https://pytorch-geometric.readthedocs.
https://petar-v.com/talks/GNN-Wednesday.pdf

Comp 599: Network Science 43

Classification - One slider

train validation test

● The most common supervised learning setup
● Learns a function that maps each input/datapoint to an output/class based on a set of

example input-output pairs, a.k.a. labelled data
● This function has parameters that are adjusted based on examples in the training set, usually

by minimizing a loss defined based on how well the model’s output and actual outputs match
● This optimization is commonly based on gradient descent, i.e. adjusting the parameters of

model/function step by step towards where the loss is decreasing
● Evaluation: since these examples are seen by the model, we test the performance on an

hold-out, unseen test set
● Model Selection: The models often have hyperparameters that we do not learn directly but tune

them by checking different possible values and measuring the loss on the validation set

