Dynamics

Analysis of complex interconnected data

Comp 599: Network Science, Fall 2021



Qutline

e Graphsand Time
e Diffusion Processes

o Modelling Epidemics as Spreads Slides mostly based on Introduction
o Contact Graphs Data Sources to network book, chapter 17 and

o Mobility Data and Population Dynamics network science chapter 6 and 10

o Classic compartment based models

o Network-based variations

o Covid examples: contact SEIR, flight SEIR

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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https://www.google.com/url?q=https://mcgill.on.worldcat.org/oclc/1043555621&sa=D&ust=1572907323375000
http://networksciencebook.com/chapter/10

Graphs and Time

e Diffusion Processes

o propagates/transmits/commutes/spreads over the graph structure

e Cascading graphs

change on structure

structure as change

o evolving graphs that trace propagation without a given underlying structure

e Dynamic Graphs

structure is changing

o graphs that naturally change through time, nodes and edges are added/removed

e Streaming Graphs
o Dynamic graphs that are too large to be considered at once

substructure is changing
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Qutline

e Graphsand Time
e Diffusion Processes

O

o O O O O

Modelling Epidemics as Spreads
Contact Graphs Data Sources

Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations

Covid examples: contact SEIR, flight SEIR

e Dynamic Graphs

(@)

(@)
(@)
@)

Modelling Temporal Graphs

Dynamic network analysis: Patten example
Dynamic network analysis: Measure example
Dynamic network analysis: Module example
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Diffusion Processes

e Graph structure provides the routes for dynamic processes
e An entity propagates/spreads over the graph

o disease (epidemics on contact nets)
o meme & news (social media)
o traffic (transport nets)

Disease spread: infected, contagious, susceptible
Similar models can be applied to understand the flow
Information: news, rumors, or gossip

Exposed, believed, credulity

Comp 599: Network Science



Diffusion Processes as flows

traffic (transport nets), population mobility, electricity Percolation and

cascading failure as a contagious behavior network resilience
Chapter 16 of NI

Transmission line failure in power grids, can overload other edges
and lead to large power outages and blackouts

2003 North American

Blackout
from Network Science book

S ; =
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http://networksciencebook.com/chapter/1

Phenomena

Venereal Disease
Rumor Spreading
Diffusion of Innovations
Computer Viruses
Mobile Phone Virus
Bedbugs

Malaria

Agent

Pathogens

Information, Memes
Ideas, Knowledge
Malwares, Digital viruses
Mobile Viruses

Parasitic Insects

Plasmodium

Diffusion Processes example networks and agents

Network

Sexual Network

Communication Network
Communication Network

Internet

Social Network/Proximity Network
Hotel - Traveler Network

Mosquito - Human network

Comp 599: Network Science
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Modelling Epidemics as Spreads

Infectious diseases spread when people come into close contact
droplet, touch, airborne (same room), etc.

Close contact can be modeled as an edge in the graph
One of the reasons for interest in Network Science from early on but

relevant now more than ever

e Understand and predict the outcomes of epidemics
e Decide on interference strategies (restrictions, vaccination, etc.)

Where can we get data on how people come into contact?

Comp 599: Network Science 9



Contact Graphs Data Sources

e Mobile Carriers

o cell-phone pings to towers
e Wifi providers

o cell-phone connections to wifi hubs
e GPS tracking apps

o Google location history

e Rfids

o special purpose tracking devices

Comp 599: Network Science



Contact Graphs from Mobile Carriers: example

This model of West
African regional
transportation patterns
was built using, among
other sources,
mobile-phone data for
Senegal, released by the
mobile carrier Orange.

Cell-Phone Data Might Help Predict Ebola’s Spread > " :
Comp 599: Network Science 11



https://www.technologyreview.com/s/530296/cell-phone-data-might-help-predict-ebolas-spread/

Contact Graphs from Wifi providers: example

edges are formed between nodes (mobile phones) that are connected to the same public wifi
hub at the same time

® [ ] ; > e

{le Sans Fil (ISF) is a St e S e Lo gg;z?u%nt
not-for-profit organization 2 ® §J° & mm &
established in 2004 in e 1 e A
Montreal, Canada, that e %, ”‘ N

, “OFLY J
operates a system of public “ a
Internet hotspots. Hotspots S /'d
are located in cafes, I Community 1 & a\'
community and recreation 1] Community 11 o ‘.’% 1
centers, salons, markets, B Community H1 - & e
and other small businesses Other communities w
and public places. ol = 125 a2s 5km o/ @

Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of
Disease Transmission in a Large Network

Comp 599: Network Science
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526984/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526984/

Contact Graphs from GPS tracking: example

At f Google Location History data )
Migration Census migration data
Long-term Cross-border, traffic
surveys Satellite nightlights
Seasonal Anonymized mobile phone
records
s Social media
Periodic Travel history surveys
n?".”:.‘.".m“ o % \ nir-and fhi_pping
3 AR Daily statistics
ot Personal GPS tracker
Hourly
J
All android devices, enabled on most %, Y %, %, %, b A 7, %,
« . . o, 9, % 9, % K 9, % 9, %
GLH reporting disabled (as measured by a ‘6% %, % . ‘6% %, S %
13 B . ) O, ) 23 0, )
No’ response to the question) ranged from % 2 ¥ %o 4 4
5 6% in BI’OZH tO 17 5% iﬂ .the UK” Fig. 1 The information niche that Google Location History occupies. Adapted from [9); left includes traditional mobility data, right includes mobility

data available with more recent technologies. Google Location History data (yellow) record location points similarly to GPS trackers, while spanning
timescales similar to mobile phone data, and cover a breadth of time spans and spatial scales not possible in other datasets

Using Google Location History data to quantify fine-scale human mobility
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https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-018-0150-z

Contact Graphs from rfid: example

Click the labels on the right to filter the data [NV S8 PATIENTS il PHYSICIANS | CAREGIVERS/VISITORS | WARD ASSISTANTS

displayed

% 7 WARDASSI
Hospitals shouldn’t make you sicker. IS4,
But plenty of people acquire illnesses P1dd
while hospitalized—in some
countries, such so-called nosocomial
infections afflict more than 10
percent of patients.

Moy

To investigate transmission
pathways, European researchers of
the SocioPatterns collaboration fitted
119 people in a ward of the Bambino
Gesu Children's Hospital with radio-
frequency identification (RFID)
badges. The tags registered face-to-
face interactions—and the potential
spreading of airborne pathogens.

Nurses interacted with the widest
variety of individuals across the ward
—patients, doctors, other nurses, and
so on. The study indicates that nurses
should take priority in strategies for
preventing or controlling hospital
outbreaks.

BUILDING INTERIOR
TRACKING
EATERIOR SOFTWARE

HOW TO READ THIS GRAPH

https://www.scientificamerican.com/article/araphic-science-rfids-tags-track-possible-outbreak-pathways-in-hospital/
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https://www.scientificamerican.com/article/graphic-science-rfids-tags-track-possible-outbreak-pathways-in-hospital/

Hospital Acquired Infections e

BALI

Common & Costly (money & lives)

Yearly Cases | Deaths rﬁ)

N ||
us 17M | 200K VR | l I. JE
Canada | 99K 8K \ W = :‘
ms
’ '.,ZW | l Y ﬁ. . i
11 N b
gz:TT:ORLsANF;:R:J::TAIzS The patient in the next bed is highly

infectious. Thank God for these curtains.”
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Network-based variations
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e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Mobility Data and Population Dynamics

Beyond modelling contact between individuals, we can model between
population movements that are critical in global modelling of pandemic as well
as disaster response, migration statistics, etc.

e [Data sources:

o All the sources for contact graphs
o Border crossing records See the covid infected
flights in and out of
m https//wwwi150.statcan.gc.ca/t1/tbll/en/cv.action?pid=2410004101  canada:
o  Flight and rail records Bﬁig”&““-be/“o
m https//www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2310000201
o Social Media

m Use of Twitter social media activity as a proxy for human mobility to predict the
spatiotemporal spread of COVID-19 at global scale

Comp 599: Network Science 17 =


https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=2410004101
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2310000201
https://geospatialhealth.net/index.php/gh/article/view/882
https://geospatialhealth.net/index.php/gh/article/view/882
https://youtu.be/FJOUmlNAg0I
https://youtu.be/FJOUmlNAg0I

Population Dgncmcs from phones example

\[m /

7 —, Nejsmens
Maidugun “’/ 4

T

p "i

o b Mor{ovia L G- .
settlements labeled). 0 N BTS20
rows the wolal predicted number o &

tri p~ asti 2 1o ome week over the course m a b

! Renva, rhu.x&;

d Cote d voire produces almesl dentical
madels). In N black lines are shown to reoresens where more
than 30,600 Lrips between seudemer s further than 20km aparl are
estimated. For the remaining countr: blue line is shown itmore

than 0,000 1rips between locations over 20km apart are estimated. FLDWMIN“EH_[]RG

https://covid19.flowminderorg/ data
Comp 599: Network Science

call data {in th
data from Sen



https://www.worldpop.org/focus_areas#case3
https://covid19.flowminder.org/

Population Dynamics from flights: example

North American Flight Patterns: https://vimeo.com/5368967

Global Epidemic and Mobility (GLEAM)

http://www.gleamviz.org/

captures the worldwide spread of the pandemic

% Comp 599: Network Science 19


https://vimeo.com/5368967
http://www.gleamviz.org/
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e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
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e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Compartmental Models of the spread of infection

dynamics of the disease is reduced to changes between a few basic states

The SI model Susceptible %-

TheSRmodel (s | —> (D —> (D

The SIS model @-
The SEIR model [ susceptivle | ——> [

Many more models

Comp 599: Network Science 21


https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Compartmental Models: traditional models

Population dynamics, mathematical modelling
Kermack-McKendrick theory (1927) and_Reed-Frost model (1928)
lgnore the contact networks, assume people come into contact at random

Only consider population size

S(1): [expected] number of susceptible individuals at time t ds(?) S(@)
, . o : =—B(—I1) +aR(t)+ (P - 5(1))
I(t): [expected] number of infected individuals at time t dt P
R(1): [expected] number of recovered individuals at time t e S
E(t): [expected] number of exposed individuals at time t T Ta

ui‘\ i G PO = 310) - ar () )
Pl gmm € Y
B
Sap Ny wg

Comp 599: Network Science 29 =
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differential equations
Solve (analytically or source
\ numerically), or simulate
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https://en.wikipedia.org/wiki/Kermack%E2%80%93McKendrick_theory
https://en.wikipedia.org/wiki/Reed%E2%80%93Frost_model
https://wiki.eclipse.org/Introduction_to_Compartment_Models

SIR model, example

What are S, I, R?

Comp 599: Network Science
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SIR model, example

What are S, I, R? N R
INFECTION REMOVAL
® ©®
b ©®
INFECTED REMOVED
(SICK (IMMUNE/DEAD]

Comp 599: Network Science 24



SIR model, example

What are S, I, R? susceptible-infected-removed
What are  and y?

Comp 599: Network Science
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SIR model, example

What are S, |, R? susceptible-infected-removed
What are  and y?

B: number of contacts each individual has

y: rate at which infected individuals recover (or die)

dS/dt=7?

Comp 599: Network Science
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SIR model, example

B: number of contacts each individual has
dS/dt="?

Probability of meeting a susceptible person at random?
Given S + | + R = n (total population size)

Comp 599: Network Science
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SIR model, example

B: number of contacts each individual has
dS/dt="?

Probability of meeting a susceptible person at random? S/n
How many susceptible people an infected person meets?

Comp 599: Network Science
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SIR model, example

B: number of contacts each individual has
dS/dt="?

Probability of meeting a susceptible person at random? S/n
How many susceptible people an infected person meets? BS/n
Given X infected individuals, overall average rate of new infections is?

Comp 599: Network Science
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SIR model, example

B: number of contacts each individual has
dS/dt="?

Probability of meeting a susceptible person at random? S/n
How many susceptible people an infected person meets? BS/n
Given X infected individuals, overall average rate of new infections is? BSX/n

Comp 599: Network Science

30



SIR model, example

Given X infected individuals, overall average rate of new
infections is? BSX/n

ds _ _,sx
dr n s £ ‘-=£

reformulating in terms of population ratios

s+x+r=1 .
E = —[fisx,
dt

Comp 599: Network Science
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SIR model, example

other rate of changes, derived similarly

Comp 599: Network Science
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SIR model, example

— ¢ = Soe—/)'r/}' we integrate both sides with respect to t to get
S+x+r=1
dr .
— =y(1 = r—s0e?").
dt can’t evaluate the integral in closed form but we can evaluate it numerically

Comp 599: Network Science 33 =



SIR model, example

numerical solution of the SIR equations

T % T L} T % T T T
— Susceptible
0.8 |-
kS
é_ 0.6 - \Rccovcrcd -
2
B
5 04 -
.g Infected
42
0.2 .
0 , " 4 N 1
0 5 10 15 20 25 30
+ + l Time ¢
AY X =
Time evolution of the SIR mode
4s . B=1, y=04, s,=0.99,x,=0.01, and r =0 ’
— =y(1 —r—spe™?"). Newman’s book
dt

Comp 599: Network Science 34 %



1 T T T T T T
Susceptible
- |
SIR model, example
5 g
é_ 0.6 - \Recovercd -
2
k]
'% 041 Infected
£
i3
'8 V"® {
0 | 1 1
0 5 10 15 20 25 30
Time ¢

Time evolution of the SIR mode
dr I B=1,y=04, s,=0.99,x,=0.01, and r,=0
E i }’(1 P /)f/}’). 0 0 0

What does asymptotic value of r represent? (dr/dt = 0)

Comp 599: Network Science 35



SIR model, example

0.6 -

of populatio:

ction

0.4 -

S}H~{1}-~R]

sl

Time evolution of the SIR mode

% = y(1 — r— speP).

Asymptotic value of r (dr/dt=0):
total number of individuals who ever catch the disease
total outbreak size, final attack rate

r=1-—e?

B=1,y=04,5,=0.99,x,=0.01, and r =0

Comp 599: Network Science
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SIR model, example A :]

0.6 - T Rec

ction of populatio:

0.4 -

S}H~{1}-~R]

Time evolution of the SIR mode
B=1,y=04,5,=0.99,x,=0.01, and r =0

1

5
@
&
=%

dr .
= = (1 = r—soer),
o y(1—r—2s9 )

Asymptotic value of r (dr/dt=0):
total number of individuals who ever catch the disease
total outbreak size, final attack rate

r=1-—e?

When do we have outbreak?

Comp 599: Network Science



SIR model, example LN :]

0.6 - \R“ e

tion of populatiol

04

Time evolution of the SIR mode
—Prly B=1,y=04, 5,=0.99,x,=0.01, O’ﬂd r,=0
r=1-e¢ Newman’s book

Asymptotic value of r, total outbreak size = epidemic threshold (B=y)
B<Y = no epidemic at all

“infected individuals recover faster than susceptible individuals become infected, so the disease

cannot get a toehold in the population”

Comp 599: Network Science
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SIR model, example LN :]

0.6 - \R“ e

tion of populatiol

04

Time evolution of the SIR mode
" —Prly B=1,y=04, 5,=0.99,x,=0.01, O’ﬂd r,=0
r=1-—e Newman’s book

Asymptotic value of r, total outbreak size = epidemic threshold (B=y)
B<y = no epidemic at all

“infected individuals recover faster than susceptible individuals become infected, so the disease

cannot get a toehold in the population”

Any relation to graphs?

Comp 599: Network Science
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Emergence of a giant component in ER graphs

@p=0 ®p=1

G(n,p) = <k>=1

(Erdos and Renyji, 1959)

At which point we see a giant component?
(NG/N is finite; NG grows in proportion to N)

08
0.6 -
04
0.2

0
0

(@)

T —c=05 |

0.2

1
0.4

H 1
0.6 0.8

c =B

S=1-—e" fraction of nodes that are in the giant component

.,
|

=1- e_’}r/r fraction of nodes that are infected

Comp 599: Network Science
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SIR model, example

probability that the individual is still infected after a total time 1is given by?

lim (1 — }/51)"/‘5’ =e
(ST—!O

y OT: probability of recovering in any time interval o1

lim, _, “((] —ax)%)

X nla
Apply exponent rule [

( L 2In(1
1 —ax) ¢

b —_—ay
=i ”(E»Tl““ a.\))
s - —ba
Apply the Limit Chain Rule: e

—ba
=e

=@
2 1
=limy . | —7
nla)

limy (,(%In(l — a.\'J] = —a
Steps

limy “(&]n(l 7ax))

simplify %ln(l —ax): M
= limy _ “( In( l;rax} )

Apply L'Hopital's Rule

Comp 599: Network Science
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https://www.symbolab.com/solver/limit-calculator/%5Clim_%7Bx%5Cto0%7D%5Cleft(1-a%5Ccdot%20x%5Cright)%5E%7B%5Cfrac%7Bb%7D%7Bx%7D%7D
https://www.symbolab.com/solver/limit-calculator/%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7B1%7D%7Bx%7Dln%5Cleft(1-a%5Ccdot%20x%5Cright)

SIR model, example

probability that the individual is still infected after a total time ris given by

lim (1 — y87)™" = 77"
or—0

probability the individual remains infected for time 1 and then recovers in the
interval between 1 and 1+dT

p(r)dr = ye " dr.

“an infected person is most likely to recover immediately after becoming infected, but might
in theory remain in the infected state for quite a long time”

Comp 599: Network Science
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SIR model, example

probability that the individual is still infected after a total time ris given by
lim (1 — y87)™" = 77"
or—0

probability the individual remains infected for time 1 and then recovers in the

interval between Tand T+dT L e=77 t .

expected number of others they will have contact with during that time is Bt

Basic reproduction number

“average number of additional people that a person passes the disease on to before they recover”

Ro = Py / s re 'dr = /7 R,=1= epidemic threshold (B=y)
0

Comp 599: Network Science
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https://www.symbolab.com/solver/indefinite-integral-calculator/%5Cint%20x%5Cleft(e%5E%7B-ax%7D%5Cright)dx

SIR model, example LN

0.6 - ™ Recovere

tion of populatiol

0.4 -

Time evolution of the SIR mode
B=1,y=04,5,=0.99,x,=0.01, and r =0

Asymptotic value of r (dr/dt = 0) = epidemic threshold (B=y)
B<y = no epidemic at all

“infected individuals recover faster than susceptible individuals become infected, so the disease
cannot get a toehold in the population”

Basic reproduction number (R=D = epidemic threshold (B=y)

“average number of additional people that a person passes the disease on to before they recover”

Comp 599: Network Science
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Dynamics- Quick recap

® GI’OphS & Time: diffusion on graph, cascade as the graph, dynamic graph, streaming graph

e Diffusion on Graphs

o An entity that spreads/flows over the graph: disease, meme & news (social media), etc.
o Epidemic modelling with contact graphs & between population dynamics
o Classic compartment based models

m Differential equations of compartment size changes (S, |, E, R)

m Total outbreak size (asymptotic value of R) relates to the size of giant component in ER graph
e  We have an outbreak with the similar condition as having a giant component

m  Assume full mixing (= ER contact graph)

Comp 599: Network Science 45



Qutline
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o Modelling Epidemics as Spreads
Contact Graphs Data Sources
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Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example

Comp 599: Network Science
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Epidemic models on networks

generalized to the network case considering transmission rate for edges

Instead of

full mixing
anyone could
contact/infect
anyone

infected nodes
spread the disease
to their susceptible
neighbors

Comp 599: Network Science
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Epidemic models on networks

generalized to the network case considering transmission rate for edges

Instead of infected nodes
full mixing 5 spread the disease
anyone could to their susceptible
contact/infect .

neighbors
anyone

Depends on the network structure and on the position
Would we OlWOUS have an outbreak? in the network of the first infected individual

Comp 599: Network Science



Epidemic models on networks

an individual's probability of infection at early times is proportional to
eigenvector centrality : higher = infected sooner

the position of the epidemic threshold depends on the leading eigenvalue of the
adjacency matrix. If the leading eigenvalue is small, then the probability of infection
B must be large, or the recovery rate y small, for the disease to spread

49
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connecting outbreak

Epidemic models on networks sizes and percolation

SIR model, transmission probability ¢ = 1 —e ™"

Bond percolation: a fraction ¢ of edges are occupied uniformly at random
represent those along which disease will be transmitted if it reaches either
of the nodes at the ends of the edge

percolation transition = epidemic threshold

As ¢ increases, S also
increases and hence
both the probability

o . o | and the size of an
L] /\ ’ o ’ \ epidemic increase
ANY 1 é l with ¢.

@ ¢=02 (b) ¢p=05 © ¢=1

Comp 599: Network Science 50 =

count the nodes in the appropriate percolation cluster




connecting outbreak

Epidemic models on networks sizes and percolation

SIR model, transmission probability ¢ = 1 —e ™"

Bond percolation: a fraction ¢ of edges are occupied uniformly at random
represent those along which disease will be transmitted if it reaches either

of the nodes at the ends of the edge
percolation transition = epidemic threshold
count the nodes in the appropriate percolation cluster
. | -

@) ¢=02 (b) =05 © ¢=1

Can measure the
long-time behavior,
about the overall
total number of
individuals infected
by the disease

But not the temporal
evolution of the
disease outbreak

= simulate instead

Comp 599: Network Science
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Network Modelling

We can model/simulate it! oo

e More accurate
e Enables further analysis ® 9

o  Contact tracing ® @ . ..
Findi i, ds; ‘ \
o inding super'spre.oders | e ZAU‘J" ® Ps »-®
e Enables comparing interventions dr ; ® * & @ s
o Vaccination dxi o ° @
Xi
o  Social distancing T = fis; ZA:j-“j = 7Xis ® @ *-e D
o  Quarantine J i L
. © Kl
o Wearing masks dr : 2 z - 1
"7 ¥Xis ® o

s(D, x(D), and r(t) to be the probabilities that node iis
susceptible, infected, or recovered respectively at time t.

Comp 599: Network Science 52 %


https://statnet.github.io/nme/index.html

Epidemic models on networks

Network structure and patient zero are both important

|Identification of Patient Zero in Static and Temporal Networks: Robustness and Limitations

Comp 599: Network Science
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https://arxiv.org/pdf/1406.2909.pdf

included four super-spreaders.
The most important of these
was Patient Zero, the physician
China, who brought the disease
to the Metropole Hotel.

One-hundred-forty-four of the
206 SARS patients diagnosed in
Singapore were traced to @
chain of five individuals that
from Guangdong Province in

Contact Tracing

5 Lo

Comp 599: Network Science
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e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Contact Graph Epidemic Modelling of COVID-19

Date Location Event(s)
e X O I I l e Mar. 11 | [Worldwide] WHO declares global pandemic
Mar. 12 | [QC] returning travellers to self-isolate
[ON] close public schools
Mar. 13 | [ON, AB] cancel events > 250
for Transmission and Intervention Strategies ROEE e
g [NS, NB] discourage gatherings > 150
Mar. 14 | [QC, ON] ban visits to long term care facilities
Mar. 15 | [NS] close schools, childcare, casinos
ban visits to long term care facilities
ban gatherings over 150
Mar. 16 | [Canada] close borders, excluding US.
[Canada] mandatory 14 days quarantine
[QC] close schools, universities, and daycares
4 Mar. 17 | [ON, AB] ban public events of over 50
[BC] close schools, restaurants, and bars
Mar. 19 | [NB] close most businesses, gatherings < 10
Mar. 20 | [Canada] close boarder with US
Mar. 23 | [NS] quarantine for domestic travellers
[Canada] social distancing enforced
[ON, QC] close all non-essential workplace
Apr. 6 [Canada] advise to wear masks
May 22 | [MTL] allow outdoor gatherings < 50
ease social distancing for some
May 25 | [MTL] reopen shops with exterior entrance
[QC] reopen manufacturers without restrictions
June 15 | [MTL] reopen personal and aesthetic care
June 22 | [MTL] reopen restaurants
June 28 | [MTL] reopen educational childcare facilities
. July 18 | [QC] reopen offices
ER Gl’[lph Montreal Wlfl Aué. 1 [QC] alloliv indoor gathering < 250
Contact Network Contact Network Aug:s | Q€] allowoudgonEgthennes 290

Table 1: Timeline of Canada COVID-19 selected NPI events
Read more here & here based on (Vogel 2020; Trevor Lawson 2020)
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https://arxiv.org/pdf/2010.03081.pdf
https://www.proquest.com/docview/2572546667?pq-origsite=gscholar&fromopenview=true

Contact Graph Epidemic Modelling of COVID-19

example

as __ps1
dt N
£ _goi g
%zoE—'ﬂ
%=
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Contact Graph Epidemic Modelling of COVID-19
example

Infected

0.008
20006

v
£0.004

< —— Base
0.002 ea

0.000

- Regular

ER
BA
wifi 1
wifi 2
witl 3
Base
Real

ates

CGEM closely approximates
the base SEIR model when the
contact network is assumed to
be Erdds-Renyi graph.

Assuming an Erdds-Renyi
graph as the contact network
overestimates the impact of
COVID-19 by more than a
factor of 3 when compared
with more realistic structures.
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Contact Graph Epidemic Modelling of COVID-19
example

0.0%SD /X 015 —— 0.0%SD

0.4 10.0%SD [/ \X : 10.0% SD
E 30.0% SD \ E s 30.0% 5D
,.Eo.z 50.0% SD é 50.0% SD

|
N\
/

NOULMOMMMeEMN~NUL -0 OUNNMOMNSNMEEMNLW e~ 0 <
S AN P et e G Nl el QG el It St
MMTTTTOINODNNODNOO MOATTTTO VWV WVWMEOWY
[eNeNeNeReNeNeNeNeNeNeNeNe] OCOO0O0O0O0O0OO0OOOOO
Dates Dates
(a) ER (b) Wifi 2

Quarantining delays the peak of infection on the ER
graph whereas the peak on the real world graphs
are lowered but not delayed significantluy.
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Contact Graph Epidemic Modelling of COVID-19
example

The ER graph significantly
underestimates the effect of wearing
masks in terms of the total decrease in
the final attack rate

0.0 e ieQUAC

-0.5 4

-10- ER graph significantly
2-15 5“ underestimates the
£ 50 — Regur 2 second peak after
el reopening public places,

wifi 1 «Q i.e. allowing
i back hubs.
=35 wifi 3 00

AR 0,42, 10 ) D AV Al 90 AY B Ab
OO P M T TN DT b Y T TR b of
Dates
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Qutline

e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example

Comp 599: Network Science

61



Incorporating Dynamic Flight Network in SEIR to
Model Mobility between Populations

e Early detection of outbreaks due to imported
pre-symptomatic and asymptomatic cases

e More accurate estimation of the reproduction
number

e Evaluation of the impact of travel restrictions
and the implications of lifting these measures

oK~ Qﬁ

(a) Fli ght Network on January 21 d 2020

a y S8 —c "f’:-?f oS L By =,

i R o e =
H LVt &)
25.00% Air Traffic H = ‘q ® 9 “::-
H ;
05| ---- 50.00% Air Traffic 4
75.00% Air Traffic ..
----- 100.00% Air Traffic nk ,,

e .08 Fit Real Air Traffic ¢...

;. ---- Reopen date: 2020-08-01 <

g 0.03 « Data

= r

0.02 ! ; \
“uy ' ¥ = R,
T ey i W N SR y
001 e 2N el NS { ‘}4
H . .
- v v 1
0 A5 oY A5 0L 15 0 (b) Flight Network on April 2nd, 2020
20209877 50200677 50010 3007 20200877 52008 2020
Date Figure 1: Flight network before and after imposing travel restrictions
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Incorporating Dynamic Flight Network in SEIR to
Model Mobility between Populations

e Early detection of outbreaks due to imported
pre-symptomatic and asymptomatic cases

e More accurate estimation of the reproduction
number

e Evaluation of the impact of travel restrictions
and the implications of lifting these measures
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Qutline

e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Common Types of Temporal Information

e Diffusion Processes

o  Graph structure provides the routes for dynamic processes \ /

o An entity propagates/spreads over the graph — ~
e Dynamic Graphs

o Graph evolves over time

o  Structure is changing, as interactions/edges often happen at a specific time

] Some edges are more dynamic than others: email exchanges, v.s. followership
e Streaming edges \ \\
| | Q.
o Graphs received over time and can not be kept fully ~i{ —> ~~ \/__

i a bi a3 a3 by by

&1 8i3iss

va by as ar as as as bs

i@ @ @ @ @ @ @ @ SEDANSPOT: Detecting Anomalies in Edge Streams
edges received till time t=0 * edges received aﬁer timet=0 -
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8594926

Modelling Dynamic Graphs

Sequence of graphs:

time-stamped interactions: e = (i, j, 1)

Consider edge persistence edges have durations e = (i, j, t,, At)
edge in G, if
e—O
e—O
®—O
t—1 t t+1 From Clauset’s slides
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Qutline

e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Dynamic network analysis: Patten example

We can define and study patterns in dynamic graphs

19 —=—Full graph 2 —=—Full graph
-e-Post '95 subgraph 11 R - -Post '95 subgraph
E d iO m ete r_ O\/e r_ ti m e 9 -0~ Post '95 subgraph, no past ' =¢- Post '95 subgraph, no past|
10
'g ' g g ]
£ £ 2
29 2 8
. . £ g
Graphs over Time: Densification Laws, 6
5
. . . . . 5
Shrinking Diameters, and Possible Explanations.”
l@92 1994 1996 1998 2000 2002 2004 1“992 1994 1996 1998 2000 2002
Time [years] Time [years]
(a) arXiv citation graph (b) Affiliation network
35
~—Fal graph i
-e-Post '85 subgraph
30 -0~ Post '85 subgraph, no past 48
825 g
g § 40
i :
= =
g G4
g1 g
10 42
1575 1980 1985 1990 1995 2000 3%)00 3500 4000 4500 5000 5500 6000 6500
Time [years] Size of the graph [number of nodes]
(c) Patents (d) AS
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https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf
https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf

Qutline

e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Dynamic network analysis: Measures example

O
We can define measure on dynamic graphs S O/f © I

E.g. compute mean degree over time .q
time-varying physical proximity of 115 individuals over the fgL/f,’\ ﬁ’mﬂ
course of one month in the MIT Reality Mining study ,° — — — :
5 —— A =8 hrs
e 3 :
— o5 z o
u - k.| 5
o = » —
" = pe = Fi‘ga]ity 0‘ W\J\
ol [I= T inin “ m
. Dl . = et s 2
[xy 15:4523 ] @ M '
[ %z, 15:45:23 ] x ™ - . M_ M w"’\\ oo

S WO
NNNNNN Oct 11 Oct 12 Oct 13 Oct 14 Oct 15 Oct 16 Oct 17 Oct 18
[z x,15:46:02 ] -
o
[uw, 15:46:12] S

Persistence and periodicity in a dynamic proximity network
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http://realitycommons.media.mit.edu/pdfs/Clauset.pdf
http://realitycommons.media.mit.edu/badgedataset4.html

Qutline

e Graphsand Time

e Diffusion Processes

o Modelling Epidemics as Spreads
Contact Graphs Data Sources
Mobility Data and Population Dynamics
Classic compartment based models
Network-based variations
Covid examples: contact SEIR, flight SEIR

o O O O O

e Dynamic Graphs
o Modelling Temporal Graphs
o Dynamic network analysis: Patten example
o Dynamic network analysis: Measure example
o Dynamic network analysis: Module example
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Dynamic network analysis: Modules examples

We can find persistent or evolving communities over time

E.g. Communities have fluctuating members in DBLP co-authorship network
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Dynamic network analysis: Modules examples

e Independent Community Mining
o  Detect communities at each snapshot without considering
temporal information
o  Suitable for networks with highly dynamic community structures
o  Communities are tracked and matched based on their similarity

e Incremental Community Mining

o  Use the temporal information directly to detect communities
o  Suitable for networks with community structures that are more
stable over time

cost = aSC(G;,C;)) + (1 — a)TC(Ci_4,C))
o SC: snapshot cost TC: temporal cost

the snapshot cost SC() measures the quality of the detected communities
the temporal cost TC() measures how similar the current communities are with the previous detected communities

R 3 e R B
o et = o . @ m | Yo e
L@ N FTON =~ T -
@ | "w| RACTA| S - B =
. ® — N "

@@L o o ' ' o & e
o lo o o o> | © | ® | © |0 O
S B R B |

5 P — — \
° o @ | e
P %tia —— I = | ™ 4@/ o

®
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Dynamic network analysis, incremental example

The community structure is updated as new data arrives

/2 ——71
group the nodes based on 4§3 g
the communities detected at (G,) | () |
previous snapshot and 7# _—5\9 E§ T
current graph structure rave \
i.e. only consider edges in the
same module and find

— 1
12
connect components 4\/3// 4\/3/
(G,) | (c)
Expand these cores for find W5 (cc)) WS
9
new modules e L
10 10— 8

Incremental Local Community |dentification in Dyunamic Social Networks
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https://ieeexplore.ieee.org/abstract/document/6785692

Dynamic network analysis, prediction example

form survive merge dissolve

_______________________________

We can predict what happens to a community

ﬁéf&:ﬁ:\og%':;xwm . ‘t = | ‘t: J > |

bAverageDegree
& survive ‘

O!ulermosls atio I—1]
Lifespan
==

C|ose::yssLe!a:evs -—-

opl
AVananceCloseness =
AClosenessLeaders =
MAverageCloseness

PreviousCohesionTransition
PreviousMerge
PreviousSunave

r StableLeaderTopics
LeftiNodesRatio

=1 Similant =R
LeadersRatio
DegreelLeaders
NodesNumber
PreviousSplit
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xADegve%:gadevs
wverageDegree
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JoinNodesRatio
BN AOutermostsRatio
== AverageCloseness
PreviousSze Transition
Cohesiol

on

split
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' \‘
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Community evolution prediction in dynamic social networks events that characterize the evolution of communities
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https://ieeexplore.ieee.org/abstract/document/6921553

Common tasks in network science

. Pattern & Anomaly Detection

. Modelling of Structure, Evolution, & Dynamics
. Measurements of Ranking & Similarity

. Clustering & Community Detection

. Prediction of Missing Link & Attributes

. Summarization, Visualization, & Layouts

. Temporal analysis of Evolution & Diffusion
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What tasks are unsupervised in Network Science?

e Community Detention
o ak.a. clustering nodes, finding modules
o If semi-supervised or supervised, it becomes attribute prediction or classification
e Anomaly Detection
o Ak.a. outlier detection iteration = 1
o Goes hands in hands with pattern detection \
e Summarization
o How to compress the graph
e Visualization
o How to plot the graph
e Alignment
o How to align two given graphs

GRAPHTSNE: A VISUALIZATION TECHNIOUE FOR
GRAPH-STRUCTURED DATA
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https://arxiv.org/pdf/1904.06915.pdf
https://arxiv.org/pdf/1904.06915.pdf

What is an anomaly?

“An outlier is an observation that differs so much from other observations as
to arouse suspicion that it was generated by a different mechanism.”

Hawkins’ Definition of Outlier, 1980

Slides based on:
Akoglu L, Tong H, Koutra D. Graph based
anomaly detection and description: a survey.

Data mining and knowledge discovery. 2015
May 1;29(3):626-88.

Comp 599: Network Science —

78 R C=



General Graph Anomaly Detection Problem

Given a graph, find the graph objects (nodes/edges/substructures) that differ
significantly from the majority of the reference objects in the graph.

More on this later
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