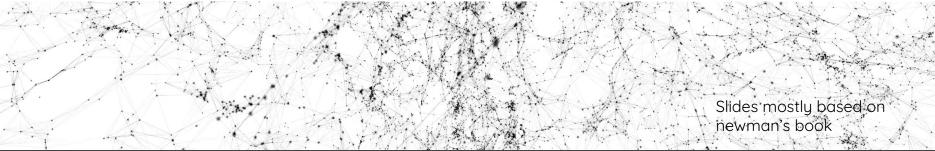


Measures

Analysis of complex interconnected data



Quick Notes

- Second assignment, questions?
 - Submit single entry as a Group in Mycourses
- Office hours:
 - Me: Thu 12pm-1pm
 - Andy: Wed 1pm-2pm
- Use slack for any questions
 - We should have everyone there now

Outline

• Centrality

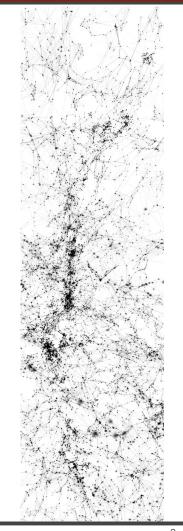
- Degree Centrality
- Eigenvalue Centrality
- Katz Centrality
- PageRank
- HITS
- Closeness centrality
- Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

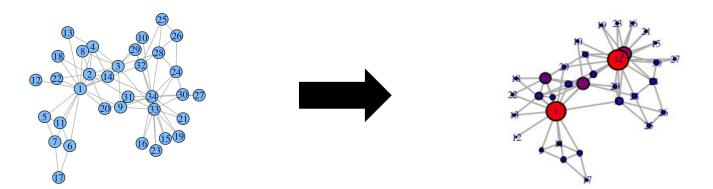
R(i) for i in [1..n]

S(i,j) for i,j in [1..n]



Centrality

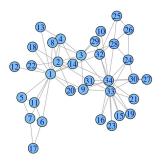
Measure the importance of nodes

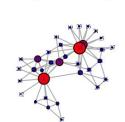


http://www.rpubs.com/shestakoff/sna_lab4

Centrality

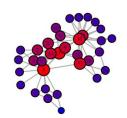
Different ways to define importance ⇒ Different centrality measures ⇒ Different ranking of the nodes on the same graph



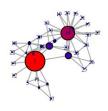


Degree centrality

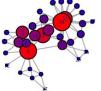
Closeness centrality



Betwenness centrality

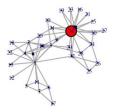


Eigenvector centrality Bona



Bonachich power centrality ংশ শহ

Alpha centrality



http://www.rpubs.com/shestakoff/sna_lab4

Outline

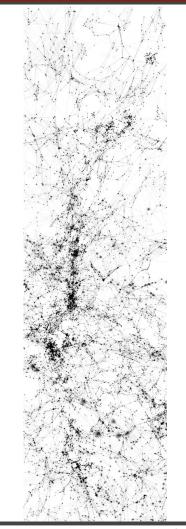
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

R(i) for i in [1..n]

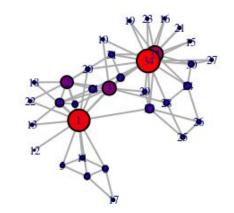
S(i,j) for i,j in [1..n]



Degree centrality

Degree is the simplest centrality measure

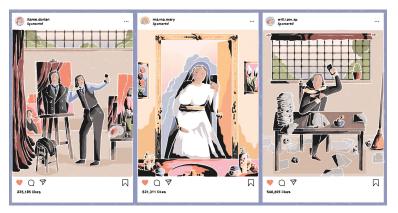
more connections you have (number of edges), more people you know (number of neighbours), more important you are



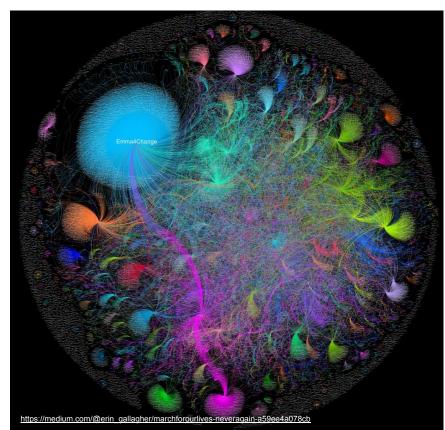
Can you think of a widely used example where people are ranked by degree centrality?

Degree centrality, example

Influencers in social media: number of followers, number of retweets

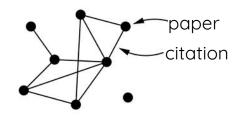


https://www.newyorker.com/culture/annals-of-inquiry/a-history-of-the-influencer-from-s hakespeare-to-instagram



Degree centrality, example

<u>.</u> ***



Important papers: number of citations, number of time a paper is cited

VIEW ALL

Albert-László Barabási Northeastern University, Harvard Medical School

Verified email at neu.edu - Homepage network science statistical physics biological physics physics

		CIENCE	i10-index	344
TITLE	CITED BY	YEAR		
Emergence of scaling in random networks AL Barabási, R Albert Science 286 (5439), 509-512	36456	1999		
Statistical mechanics of complex networks R Albert, AL Barabasi Reviews of Modern Physics 74, 47-97	22221	2002		
Linked: The New Science Of Networks AL Barabási Basic Books	10246 *	2002	2013 2014 2015 20	16 2017 20

Yoshua Bengio			FOLLOW	Cited by	
250	Professor of computer science, <u>University of Montreal</u> , Mila, IVADO, CIFAR				All
X	Verified email at umontreal.ca - <u>Homepage</u>			Citations	321619
	Machine learning deep learning artificial intelligence			h-index i10-index	169 580
TITLE		CITED BY	YEAR		_
Deep learning Y LeCun, Y Bengi nature 521 (7553	o, G Hinton	30071	2015		-11
Y LeCun, L Bottou	d learning applied to document recognition ,, Y Bengio, P Haffner le IEEE 86 (11), 2278-2324	29859	1998	I	
Generative ad	lversarial nets	22593	2014	2013 2014 2015	2016 2017 2018 201

I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...

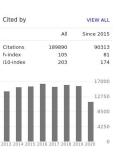
VIEW ALL		Cited by	
Since 2015	All		1
92923	228071	Citations	sló Barabási
109	145	h-index	ORK
279	344	i10-index	INCE
17000			EAR
12750		111	1999
8500		111	
4250			2002
019 2020 0	2016 2017 2018 2	2013 2014 2015	
			2002

Mark Newman

Professor of Physics, University of Michigan Verified email at umich.edu - Homepage Statistical Physics Networks

TITLE	CITED BY	YEAR
The structure and function of complex networks MEJ Newman SIAM review 45 (2), 167-256	20389	2003
Community structure in social and biological networks M Girvan, MEJ Newman Proceedings of the national academy of sciences 99 (12), 7821-7826	14555	2002
Finding and evaluating community structure in networks MEJ Newman, M Girvan Physical reasing E.60 (2) 026113	13191	2004

N.	etworks	
CITED BY	YEAR	



° (201

How to measure having important connections?

You might only have one connection but it can be the US president

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

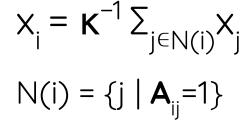
Assume x, gives the importance of node i, and N(i) gives set of neighbours of i

$$\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{j \in N(i)} \mathbf{x}_{j}$$
$$N(i) = \{j \mid \mathbf{A}_{ij} = 1\}$$

Important if you have **many connections** (of some importance), or a few but **very important connections**

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

Assume x, gives the importance of node i, and N(i) gives set of neighbours of i



How can we write this in matrix notation?

Note that we have $\sum_{j \in N(i)} x_j = A_{i:} \mathbf{x}$ where \mathbf{x} is a vector of all centrality scores

° (_____

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

Assume x, gives the importance of node i, and N(i) gives set of neighbours of i

$$\mathbf{x}_{i} = \mathbf{K}^{-1} \boldsymbol{\Sigma}_{j \in N(i)} \mathbf{x}_{j}$$
$$\mathbf{x} = \mathbf{K}^{-1} \mathbf{A} \mathbf{x} \quad \{\text{Vector notation}\}$$
$$\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$$
$$\text{What is } \mathbf{x}?$$

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

Assume x, gives the importance of node i, and N(i) gives set of neighbours of i

$$\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{j \in N(i)} \mathbf{x}_{j}$$
$$\mathbf{x} = \mathbf{\kappa}^{-1} \mathbf{A} \mathbf{x}$$

 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

 \Rightarrow x is an eigenvector of the adjacency matrix

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

Assume x, gives the importance of node i, and N(i) gives set of neighbours of i

 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

 \boldsymbol{x} is an eigenvector of the adjacency matrix

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

 ${f x}$ is an eigenvector of the adjacency matrix and ${f x}_i$ gives the importance of node i

 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

we want **x** to be non-negative then the only choice is the **leading eigenvector**

[Perron-Frobenius theorem] Any matrix with all non-negative values, such as A, any eigenvector but the leading eigenvector has at least one negative element.

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

 \boldsymbol{X} is the leading eigenvector

what is κ ?

Eigenvector centrality of a node is proportional to the centrality scores of its neighbors

 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

 \boldsymbol{X} is the leading eigenvector

what is **k**? largest eigenvalue

° (_____

Eigenvector centrality & random walks

Eigenvector centrality ranks the likelihood that a node is visited on a random walk of infinite length on the graph

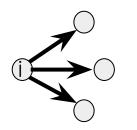
Why?

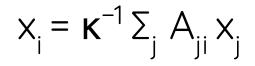
Eigenvector centrality & random walks

Eigenvector centrality ranks the likelihood that a node is visited on a random walk of infinite length on the graph

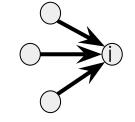
Why?

Leading eigenvector is computed with power iteration, $\mathbf{x}^{(i+1)} = \mathbf{A}\mathbf{x}^{(i)}$ A^k gives number of walks of length k



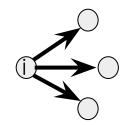


Can be defined in two ways



 $\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{i} A_{ii} \mathbf{x}_{i}$

 A_{ii} =1 if there is an edge from j to i

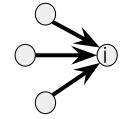


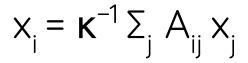
 $\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{j} A_{ji} \mathbf{x}_{j}$ $\mathbf{x} \mathbf{A} = \mathbf{\kappa} \mathbf{x}$

Can be defined in two ways ⇒ right and left eigenvectors, and two leading eigenvalues

Which one to use?

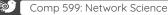
Consider the citation network and the www, which one indicates importance?



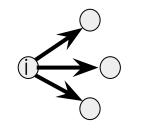


 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

[right]



[left]

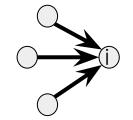


 $\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{i} A_{ii} \mathbf{x}_{i}$

 $\mathbf{X} \mathbf{A} = \mathbf{K} \mathbf{X}$

Can be defined in two ways ⇒ right and left eigenvectors, and two leading eigenvalues

Which one to use? Right



 $\mathbf{x}_{i} = \mathbf{\kappa}^{-1} \Sigma_{i} A_{ii} \mathbf{x}_{i}$

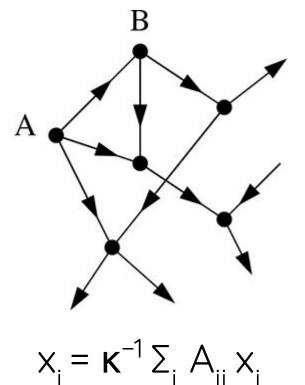
 $\mathbf{A} \mathbf{x} = \mathbf{K} \mathbf{x}$

[right]

[left]

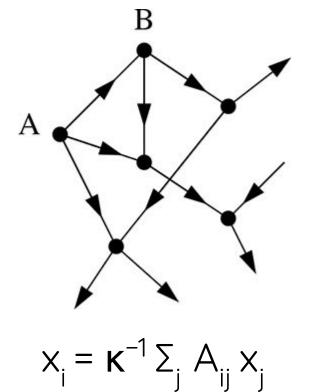
Example:

What is the score of A?



Example:

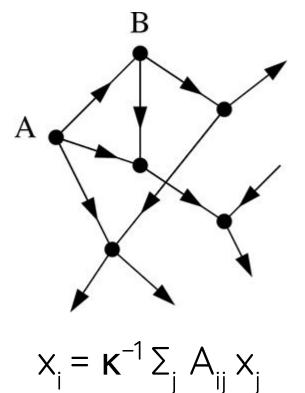
What is the score of A? a node with no incoming edge \Rightarrow zero score



Example:

What is the score of A? a node with no incoming edge \Rightarrow zero score

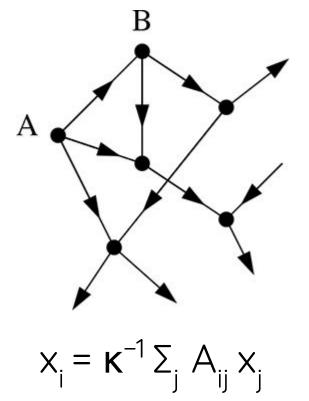
What is the score of B?



Example:

What is the score of A? a node with no incoming edge \Rightarrow zero score

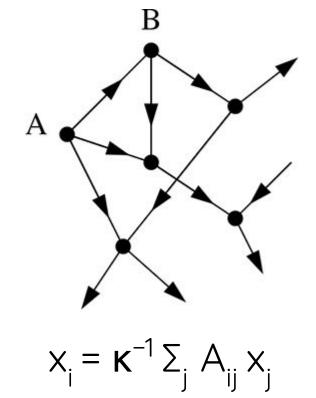
What is the score of B? also zero, only ingoing edge is from A



Only non-zero if in a strongly connected component of two or more nodes, or the out-component of such a strongly connected component

When will this be a problem?

Can you think of an example?

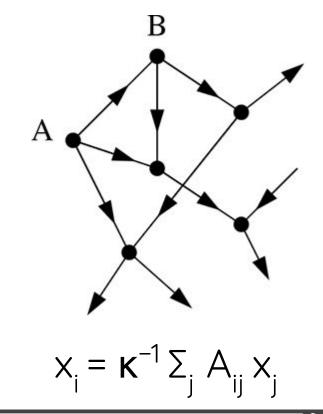


Only non-zero if in a strongly connected component of two or more nodes, or the out-component of such a strongly connected component

When will this be a problem?

In an **acyclic networks**, such as **citation networks**, where there is no strongly connected components (of more than one node) and all nodes get zero score

How can we fix it? Katz and PageRank variants



Outline

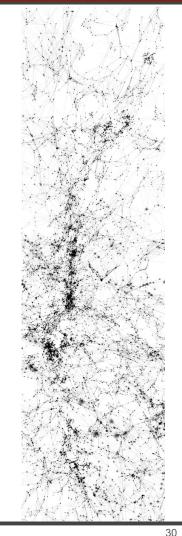
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

R(i) for i in [1..n]

S(i,j) for i,j in [1..n]



$$x_i = \alpha \Sigma_j A_{ij} X_j + \beta$$

 α and β are positive constants

eta : every node gets a basic importance

"everybody is somebody"

Nodes with zero in-degree gets β and can pass it on \Rightarrow nodes with high in-degree get high score regardless of being in SCC or pointed by it



Leo Katz (1914-1976) 1953 - Katz centrality

$$\mathbf{x}_{i} = \boldsymbol{\alpha} \sum_{j} A_{ij} \mathbf{x}_{j} + \boldsymbol{\beta}$$
$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{x} + \boldsymbol{\beta} \mathbf{1}$$

$$\mathbf{x} = \boldsymbol{\beta} (\mathbf{I} - \boldsymbol{\alpha} \mathbf{A})^{-1} \mathbf{1}$$

1 is the uniform vector of all ones: (1, 1, 1, ...)

I is the identity matrix: diag(1, 1, 1, ...)

x =
$$(\mathbf{I} - \alpha \mathbf{A})^{-1}\mathbf{1}$$
 {with β =1}

absolute magnitude of centrality scores are not important, we care about the relative values

$$\mathbf{x}_{i} = \alpha \Sigma_{j} A_{ij} \mathbf{x}_{j} + \boldsymbol{\beta}$$
$$\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \boldsymbol{\beta} \mathbf{1}$$

$$\mathbf{x} = \boldsymbol{\beta} (\mathbf{I} - \boldsymbol{\alpha} \mathbf{A})^{-1} \mathbf{1}$$

x =
$$(\mathbf{I} - \alpha \mathbf{A})^{-1}\mathbf{1}$$
 {with $\beta = 1$ }

What do we get if we set $\alpha = 0$?

$$\mathbf{x}_{i} = \alpha \Sigma_{j} A_{ij} \mathbf{x}_{j} + \boldsymbol{\beta}$$
$$\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \boldsymbol{\beta} \mathbf{1}$$

What do we get if we set $\alpha = 0$?

All nodes have the same importance as $\boldsymbol{\beta}$

$$\mathbf{x} = \boldsymbol{\beta} (\mathbf{I} - \boldsymbol{\alpha} \mathbf{A})^{-1} \mathbf{1}$$

x = $(\mathbf{I} - \alpha \mathbf{A})^{-1}\mathbf{1}$ {with $\beta = 1$ }

$$x_i = \alpha \Sigma_j A_{ij} X_j + \beta$$

$$\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{1}$$

$$\mathbf{x} = \boldsymbol{\beta} (\mathbf{I} - \boldsymbol{\alpha} \mathbf{A})^{-1} \mathbf{1}$$

What do we get if we set $\alpha = 0$?

All nodes have the same importance as $\boldsymbol{\beta}$

As we increase α , scores increase and might start to diverge when $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ diverges

x = $(\mathbf{I} - \alpha \mathbf{A})^{-1}\mathbf{1}$ {with $\beta = 1$ }

$$x_i = \alpha \Sigma_j A_{ij} X_j +$$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \mathbf{1}$

 $x = (I - \alpha A)^{-1} 1$

What do we get if we set $\alpha = 0$?

All nodes have the same importance of 1

As we increase \boldsymbol{a} , scores increase and might start to diverge when $(\mathbf{I} - \boldsymbol{\alpha} \mathbf{A})^{-1}$ diverges happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0$$

At what α this happens?

The determinant of a matrix is equal to the product of its eigenvalues, and matrix xI-A has eigenvalues x- κ_i , where κ_i are the eigenvalues of $\mathbf{A} \Rightarrow \det(\mathbf{x}\mathbf{I}-\mathbf{A})=(\mathbf{x}-\mathbf{K}_1)(\mathbf{x}-\mathbf{K}_2)...(\mathbf{x}-\mathbf{K}_2)$, with zeros at $\mathbf{x}=\mathbf{K}_1,\mathbf{K}_2,...\Rightarrow$ the solutions of $\det(\mathbf{x}\mathbf{I}-\mathbf{A})=0$ give the eigenvalues of \mathbf{A}

$$x_i = \alpha \Sigma_j A_{ij} X_j +$$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \mathbf{1}$

What do we get if we set $\alpha = 0$?

All nodes have the same importance of 1

As we increase α , scores increase and might start to diverge when $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ diverges happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0$$

At what α this happens? $\alpha^{-1} = \kappa_i \Rightarrow \alpha = 1/\kappa_i$

The determinant of a matrix is equal to the product of its eigenvalues, and matrix xI-A has eigenvalues $x-\kappa_i$, where κ_i are the eigenvalues of $A \Rightarrow det(xI-A)=(x-\kappa_1)(x-\kappa_2)...(x-\kappa_n)$, with zeros at $x=\kappa_1,\kappa_2,...\Rightarrow$ the solutions of det(xI-A)=0 give the eigenvalues of A

 $x = (I - \alpha A)^{-1} 1$

$$x_i = \alpha \Sigma_j A_{ij} X_j +$$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \mathbf{1}$

 $x = (I - \alpha A)^{-1} 1$

What do we get if we set $\alpha = 0$?

All nodes have the same importance of 1

As we increase α , scores increase and might start to diverge when $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ diverges happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0$$

At what α this happens? $\alpha^{-1} = \kappa_i \Rightarrow \alpha = 1/\kappa_i$ At what α this first happens?

$$x_i = \alpha \sum_j A_{ij} x_j + 1$$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \mathbf{1}$

 $x = (I - \alpha A)^{-1} 1$

What do we get if we set $\alpha = 0$?

All nodes have the same importance of 1

As we increase α , scores increase and might start to diverge when $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ diverges happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0$$

At what α this happens? $\alpha^{-1} = \kappa_i \Rightarrow \alpha = 1/\kappa_i$ At what α this first happens? largest (most positive) eigenvalue

$$x_i = \alpha \Sigma_j A_{ij} X_j +$$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{x} + \mathbf{1}$

 $x = (I - \alpha A)^{-1} 1$

What do we get if we set $\alpha = 0$?

All nodes have the same importance of 1

As we increase α , scores increase and might start to diverge when $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ diverges happens when

$$det(\mathbf{I} - \alpha \mathbf{A}) = 0 \Rightarrow det(\alpha^{-1}\mathbf{I} - \mathbf{A}) = 0$$

At what **a** this first happens? largest (most positive) eigenvalue

 $\alpha < 1/\kappa_1$

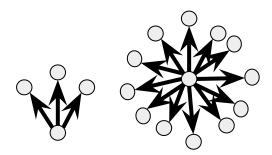
$$x_{i} = \alpha \Sigma_{j} A_{ij} X_{j} + 1$$
$$\alpha < 1/\kappa_{1}$$

 κ_1 is the largest (most positive) eigenvalue

In practice $\boldsymbol{\alpha}$ is often set close to this limit

Could this be a good measure to rank pages in the www?

$$x_i = \alpha \sum_j A_{ij} x_j + 1$$



Could this be a good measure to rank pages in the www?

If there is an important directory page, linking to many pages, it passes its importance to all the cited web pages, one can think that the importance should be diluted if shared with many others

Outline

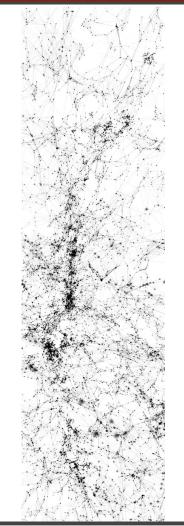
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

R(i) for i in [1..n]

S(i,j) for i,j in [1..n]



Comp 599: Network Science

divide your centrality to your neighbours, instead of passing to all

$$\mathbf{x}_{i} = \alpha \Sigma_{j} A_{ij} / d_{j}^{out} \mathbf{x}_{j} + \boldsymbol{\beta}; \quad d_{j}^{out} = \Sigma_{k} A_{kj}$$
$$\mathbf{x} = \alpha \mathbf{A} \mathbf{D}^{-1} \mathbf{x} + \boldsymbol{\beta} \mathbf{1}$$

$$D_{ii}=max(d_j^{out}, 1) \{ to avoid 0/0 when d_j^{out}=0 \}$$

 $A_{ij}=1$ if there is an edge from j to i \Rightarrow $d_j^{out}=0$ $A_{ij}=0$ for all i, then $A_{ij}/d_j^{out}=0/0$ which we want to be 0

)

divide your centrality to your neighbours, instead of passing to all

کی ا

Ų

$$x_{i} = \alpha \sum_{j} A_{ij} / d_{j}^{out} x_{j} + \beta; \quad x = (I - \alpha AD^{-1})^{-1} 1$$

What should *a* be?

$$x_{i} = \alpha \sum_{j} A_{ij} / d_{j}^{out} x_{j} + \beta; \quad x = (I - \alpha A D^{-1})^{-1} 1$$

α <the leading eigenvalue of AD^{-1}

This is 1 for undirected network but changes for directed ones.

The Google search engine uses a value of α =0.85

$$x_{i} = \alpha \sum_{j} A_{ij} / d_{j}^{out} x_{j} + \beta; \quad x = (I - \alpha A D^{-1})^{-1} 1$$

 α < the leading eigenvalue of AD^{-1}

What if undirected and we set $\beta = 0$ and $\alpha = 1$?

$$x_{i} = \alpha \sum_{j} A_{ij} / d_{j}^{out} x_{j} + \beta; \quad x = (I - \alpha A D^{-1})^{-1} 1$$

 α < the leading eigenvalue of AD^{-1}

What if undirected and we set $\beta = 0$ and $\alpha = 1$? reduces to degree centrality

° (_____

Outline

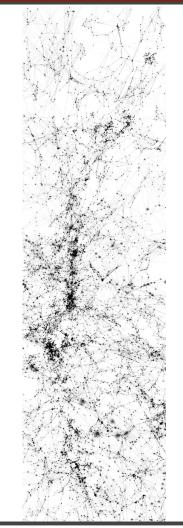
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

R(i) for i in [1..n]

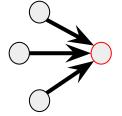
S(i,j) for i,j in [1..n]

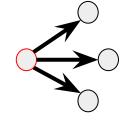


HITS: hyperlink-induced topic search

• Highly cited paper

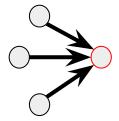
• Survey paper linking to main references





• Highly cited paper [authorities]

nodes that contain important information



• Survey paper linking to main references [hubs]

nodes that point us to the best authorities

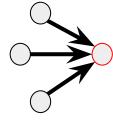
Kleinberg, J. M., Authoritative sources in a hyperlinked environment, J. ACM 46, 604–632 (1999)

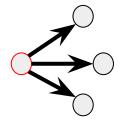
• Highly cited paper [authorities]

authority centrality x_i

Survey paper linking to main references [hubs]
 hub centrality y_i

Kleinberg, J. M., Authoritative sources in a hyperlinked environment, J. ACM 46, 604–632 (1999)





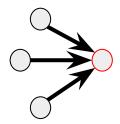
important scientific paper (in the authority sense) would be one cited in many important reviews (in the hub sense)

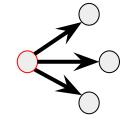
authority centrality x_i lacksquare

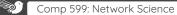
$$x_i = \alpha \Sigma_j A_{ij} y_j$$

hub centrality y_i lacksquare

$$y_i = \beta \Sigma_j A_{ji} X_j$$





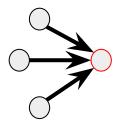


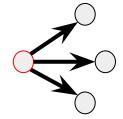
authority centrality x_i lacksquare

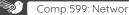
$$x_i = \alpha \Sigma_j A_{ij} y_j$$

$$\mathbf{y}_{i} = \boldsymbol{\beta} \Sigma_{j} A_{ji} X_{j}$$
 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$

 $\mathbf{x} = \alpha \mathbf{A} \mathbf{y}$







° (_____

- authority centrality x_i
 - $\mathbf{x} = \alpha \mathbf{A} \mathbf{y}$

 $\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{x} = \mathbf{\lambda} \mathbf{x}$

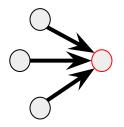
- hub centrality y_i
 - $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$ $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{y} = \lambda \mathbf{y}$
 - What is λ ?

- authority centrality x_i
 - $\mathbf{x} = \alpha \mathbf{A} \mathbf{y}$

 $\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{x} = \mathbf{\lambda} \mathbf{x}$

- hub centrality y_i
 - $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$ $\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{y} = \boldsymbol{\lambda} \mathbf{y}$

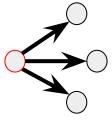
• authority centrality x_i



$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{y}$$
 $\mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{x} = \boldsymbol{\lambda} \mathbf{x}$

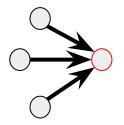
• hub centrality y_i

 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$



 $λ = (αβ)^{-1}$ What does it imply?
eigenvectors of AA^T and A^TA with the same eigenvalue

• authority centrality x_i

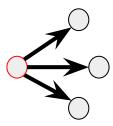


$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{y}$$
 $\mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{x} = \boldsymbol{\lambda} \mathbf{x}$

hub centrality y_i

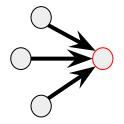
 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y} = \mathbf{\lambda}\mathbf{y}$$



 $λ = (αβ)^{-1}$ What does it imply? eigenvectors of AA^T and A^TA with the same eigenvalue largest eigenvalue to get non-negative scores

• authority centrality x_i

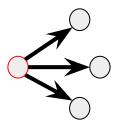


$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{y}$$
 $\mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{x} = \boldsymbol{\lambda} \mathbf{x}$

hub centrality y_i

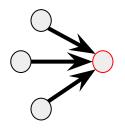
 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y} = \mathbf{\lambda}\mathbf{y}$$



 $λ = (αβ)^{-1}$ What does it imply? eigenvectors of AA^T and A^TA with the same eigenvalue largest eigenvalue to get non-negative scores

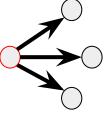
• authority centrality x_i



$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{y}$$
 $\mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{x} = \boldsymbol{\lambda} \mathbf{x}$

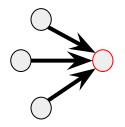
• hub centrality y_i

 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$



 $\lambda = (\alpha \beta)^{-1}$ largest eigenvalue to get non-negative scores Could we have zero scores?

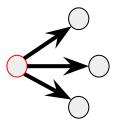
• authority centrality x_i



$$\mathbf{x} = \boldsymbol{\alpha} \mathbf{A} \mathbf{y}$$
 $\mathbf{A} \mathbf{A}^{\mathsf{T}} \mathbf{x} = \boldsymbol{\lambda} \mathbf{x}$

hub centrality y_i

 $\mathbf{y} = \boldsymbol{\beta} \mathbf{A}^{\mathsf{T}} \mathbf{x}$



 $\lambda = (\alpha\beta)^{-1}$ largest eigenvalue to get non-zero scores Could we have zero scores? Yes, but no issue since hub could be zero but authority not

Outline

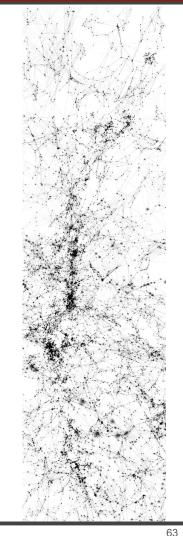
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

• Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

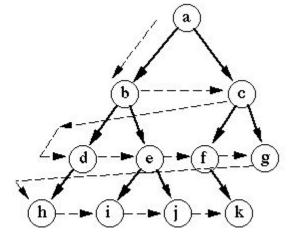
R(i) for i in [1..n]

S(i,j) for i,j in [1..n]



the mean distance from a node to other nodes, based on shortest paths

$$s_{i} = 1/n (\Sigma_{j} s_{ij})$$



Breadth-first search

the mean distance from a node to other nodes, based on shortest paths

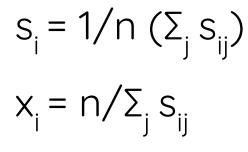
$$s_i = 1/n (\Sigma_j s_{ij})$$
 {distance}
 $x_i = n/\Sigma_j s_{ij}$ {centrality}

Could you guess who has the highest cenerality in IMDB?

the mean distance from a node to other nodes, based on shortest paths

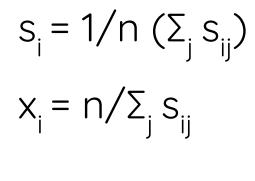
Could you guess who has the highest cenerality in IMD Bropher Lee

the mean distance from a node to other nodes, based on shortest paths



What happens if we have many connected components? i.e. disconnected graph?

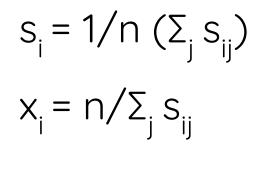
the mean distance from a node to other nodes, based on shortest paths



What happens if we have many connected components? i.e. disconnected graph? Infinite

Should we average inside components?

the mean distance from a node to other nodes, based on shortest paths



What happens if we have many connected components? i.e. disconnected graph? Infinite

Should we average inside components? Nodes in smaller components get higher centrality

Closeness centrality, reformulation

the mean distance from a node to other nodes, based on shortest paths

$$s_{i} = 1/n (\Sigma_{j} s_{ij})$$

$$x_{i} = n/\Sigma_{j} s_{ij} \qquad \Rightarrow \qquad x_{i} = 1/(n-1) \Sigma_{j} 1/s_{ij} \qquad Use the harmonic mean distance between nodes instead$$

Naturally deals with $s_{ii} = \infty$

Other property?

Closeness centrality, reformulation

the mean distance from a node to other nodes, based on shortest paths

$$s_{i} = 1/n (\Sigma_{j} s_{ij})$$

$$x_{i} = n/\Sigma_{j} s_{ij} \qquad \Rightarrow \qquad x_{i} = 1/(n-1) \Sigma_{j} 1/s_{ij}$$
Use the mean distribution of the mean distr distr distribution of the mean distributicating (the mean di

Use the harmonic mean distance between nodes instead

Naturally deals with $s_{ii} = \infty$

Other property? gives more weight to nodes that are close

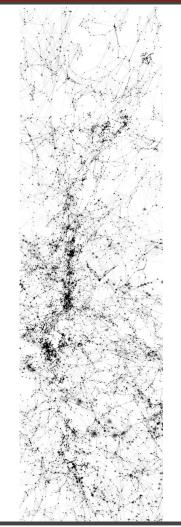
° (_____

Outline

- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality
- Similarity
 - Common neighbour
 - Cosine similarity
 - Jaccard similarity

R(i) for i in [1..n]

S(i,j) for i,j in [1..n]



the extent to which a node lies on paths between other nodes, based on shortest paths

Flow bottlenecks

- control over information passing
- removal from the network will most disrupt communications

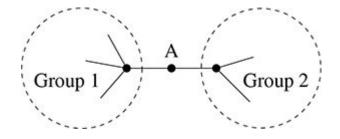
$$x_i = 1/n^2 \Sigma_{st} n_{st}^i / t_{st}$$

 n'_{st} = the number of shortest paths from s to t that pass through i

 t_{st} = total number of shortest paths from s to t

average rate at which traffic passes through node *i*

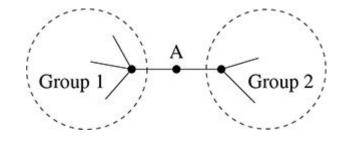
Brokers: low-degree node with high betweenness, lies on a bridge



Could you guess who has the highest betweenness centrality in

IMDB?

Brokers: low-degree node with high betweenness, lies on a bridge



Could you guess who has the highest centrality in IMBB ando Rey

Betweenness centrality has many variants and approximations given its computational complexity and usefulness

worked extensively in both film and television, in both European and American films, several different languages [in between groups]

Outline

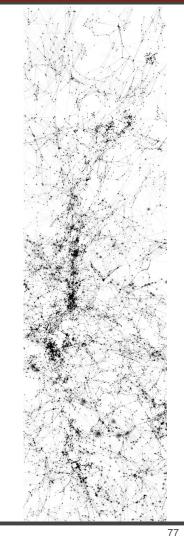
- Centrality
 - Degree Centrality
 - Eigenvalue Centrality
 - Katz Centrality
 - PageRank
 - HITS
 - Closeness centrality
 - Betweenness centrality

Similarity

- Common neighbour
- Cosine similarity
- Jaccard similarity

R(i) for i in [1..n]

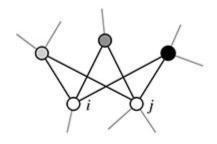
S(i,j) for i,j in [1..n]



Number of Common Neighbors

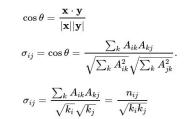
 $n_{ij} = \sum_{k} A_{ik} A_{kj}$

Is 3 a lot or too little? We need to normalize it

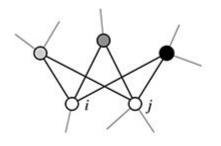


Cosine similarity

 $\sigma_{ij} = \sum_{k} A_{ik} A_{kj} / (\sqrt{d_i} \sqrt{d_j})$



what is σ_{ii} in example?



کی ا

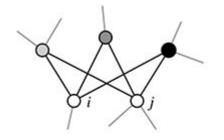
Cosine similarity

 $\sigma_{ij} = \Sigma_k A_{ik} A_{kj} / (\sqrt{d_i} \sqrt{d_j})$

$$egin{aligned} \cos heta &= rac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|} \ \sigma_{ij} &= \cos heta &= rac{\sum_k A_{ik} A_{kj}}{\sqrt{\sum_k A_{ik}^2} \sqrt{\sum_k A_{jk}^2}}. \ \sigma_{ij} &= rac{\sum_k A_{ik} A_{kj}}{\sqrt{k_i} \sqrt{k_j}} &= rac{n_{ij}}{\sqrt{k_i k_j}} \end{aligned}$$

what is σ_{ii} in example?

 $3/(\sqrt{4}\times\sqrt{5})$

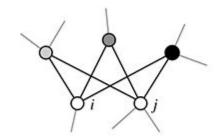


Other

• Jaccard coefficient

$$J_{ij} = \sum_{k} A_{ik} A_{kj} / (d_i + d_j - \sum_{k} A_{ik} A_{kj}) \text{ what is } J_{ij} \text{ in example}?$$

- Pearson correlation coefficient
- Hamming distance



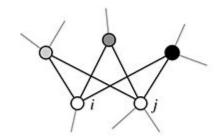
....

Other

Jaccard coefficient

$$J_{ij} = \sum_{k} A_{ik} A_{kj} / (d_i + d_j - \sum_{k} A_{ik} A_{kj}) \text{ what is } J_{ij} \text{ in example? 3/6}$$

- Pearson correlation coefficient
- Hamming distance



....