
Comp 599: Network Science, Fall 2021

Models
Analysis of complex interconnected data
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● Reminder, first assignment due in a week
○ http://www.reirab.com/Teaching/NS20/Assignment_1.pdf

○ Any questions for the assignment?
○ Submit single entry as a Group in Mycourses

● Use slack for easier communications
○ Let me know if you didn’t get an invite

● Anyone new in the class?

Quick Notes

http://www.reirab.com/Teaching/NS20/Assignment_1.pdf
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● Patterns Quick recap

● Models
○ ER model
○ BA model
○ SBM
○ Configuration model
○ FF model
○ Kronecker graph model
○ Log likelihood fitting to observed graphs

Outline
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● Sparsity Pattern 
○ mean degree << N-1 (or E << Emax)

● Scale Free Pattern
○ heavy tailed degree distribution

● Assortativity Pattern 
○ positive or negative correlation between degree of connecting nodes

● Transitivity Pattern 
○ high ratio of closed triangles (clustering coefficient)

● Small world Pattern 
○ small average shortest path

● Connectivity & eigenvalues of Laplacian matrix 
○ number of zero eigenvalues gives the number of connected components

Patterns: quick recap
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● Patterns Quick recap

● Models
○ ER model
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs

Outline
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● Introduced in 1960
● Basis of random graph theory
● Simple model that results in small-world graphs
● Parameters: ER(n, p) or ER(n, m) 

○ n: number of nodes
○ p: probability of an edge between any two nodes
○ m: number of edges

● Generation: all edges are equally likely so toss 
n(n-1)/2 coins

Erdös-Rényi Model (ER)
Paul Erdős

(1913-1996)
Alfréd Rényi

(1921-1970)

Side note:
What is Erdős number?
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Erdös-Rényi Model (ER)
For p = 0 we have ‹k› = 0, hence all 
nodes are isolated. Therefore the 
largest component has size NG = 1 and 
NG/N→0 for large N.

For p = 1 we have ‹k›= N-1, hence the 
network is a complete graph and all 
nodes belong to a single component. 
Therefore NG = N and NG/N = 1

At which p we see a giant component? 
(NG/N is finite; NG grows in proportion to N)
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Erdös-Rényi Model (ER)
For p = 0 we have ‹k› = 0, hence all 
nodes are isolated. Therefore the 
largest component has size NG = 1 and 
NG/N→0 for large N.

For p = 1 we have ‹k›= N-1, hence the 
network is a complete graph and all 
nodes belong to a single component. 
Therefore NG = N and NG/N = 1

pc = 1/ N−1 ≈ 1/NAt which p we see a giant component? 
(NG/N is finite; NG grows in proportion to N)
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emergence of a giant component at pc = 1/ N−1 
A network component whose size grows in proportion to n we call a giant component.

From https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs

Erdös-Rényi Model (ER): Connectivity

https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
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We can derive many properties of ER analytically 

derive the expected value of a property as

Where probability of observing a given graph is

or

Erdös-Rényi Model (ER): properties

p=0.03, N=100
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For large N and small k, we can use the following approximations:

Poisson degree distribution

Erdös-Rényi Model (ER): degree distribution

Select k 
nodes from N-1

probability of 
having k edges

probability of 
missing N-1-k edges

binomial
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Erdös-Rényi Model (ER): degree distribution

Exact Result
-binomial distribution-

Large N limit
-Poisson distribution-

PD
F

From Barbasi’s slides

http://networksciencebook.com/
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● Small world
○ The diameter is log(N)/log(pN)

● Small clustering coefficient
○ The clustering coefficient is p or average degree divided by N-1

■ Fixed average degree, and N grows, clustering coefficient goes to zero

Erdös-Rényi Model (ER): path length

Average shortest path 
distance in Facebook 
friendship networks, from 
Newman’s book
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● Patterns Quick recap

● Models
○ ER model 
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs

Outline
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● Generalized ER to created block-structured graphs

● Parameters: 

○ n: number of nodes
○ k2 probabilities: Pk x k 
○ k disjoint sets that divide the n nodes

● Generation: create (within, between) edges similar 
to ER for the corresponding subsets of nodes with 
the corresponding probability

Stochastic Block Models (SBM) P00

P11

P22

P01 P02
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1 2 3 4 5 6 7 1 2 3 4 5 6 7

● By Mark Newman, generalizing ER to specific degree distribution
● Parameters: degree sequence (can be easily sampled from any distribution)
● Generation: assign slots, randomly connect them
● Serves as a null model for community detection 

○ edges are distributed randomly given the degrees are fixed
○ communities that are not formed randomly should deviate from this
○ more on this later

Configuration model

Slot 
endpoint
node ids
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● Introduced in 1999, a.k.a Barabási–Albert (BA) model
● Uses preferential attachment which gives scale-free graphs
● Parameters: BA (n,m)

○ n: number of nodes
○ m: average degree 

● Generation: 
○ add one node at the time, add m connections per new node if possible
○ the probability of forming a connection to an existing node is 

proportional to its degree, i.e. p(i) = di /Σjdj 

Albert Barabasi Model (AB)
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● By Leskovec, 2005
● To follow patterns observed in real-world graphs

○ denser over time, the average degree increasing, and the diameter decreasing
● Parameters: n, p and rp

○ n: number of nodes
○ p: forward burning probability
○ r : backward burning probability

● Generation:
○ add a node at a time, connect the node to an ambassador, chosen uniformly at random
○ then, the new node recursively forms a random number of connections with the neighbours 

of every node it connects to –outlinks to specific number of inlink and outlink neighbours, 
drawn from geometric distributions with means of p/(1 −p) and r/(1 −r) respectively

Forest Fire model (FF)
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● Heavy-tailed degree distribution
○ rich get richer: older nodes have more chances to become ambassadors

● Densifies
○ newly entered node has more links to neighbours close to its ambassador

● Can result in shrinking diameter
○ Which is observed in real-world networks

Forest Fire model (FF)
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● Patterns Quick recap

● Models
○ ER model
○ SBM
○ Configuration model
○ AB model
○ FF model
○ Kronecker graph model
○ Fitting to observed graphs

Outline
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 Kronecker product of matrices

By Leskovec, 2010

Consider a small initiator matrix, use kronecker products to get the adjacency 
matrix as

 

Kronecker graph model

More here: https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs

https://snap-stanford.github.io/cs224w-notes/preliminaries/measuring-networks-random-graphs
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Stochastic Kronecker graph, initiator matix is probabilities and edges are 
drawn for the final graph with the corresponding probabilities

If all probabilities are equal in the initial matrix, this becomes equivalent to ER

the initiator matrix can be set based on real-world data to sample similar 
graphs, by searching over what matrix is more likely to give the observed 

Kronecker graph model
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● Option 1: 
○ Measure and plot different characteristics of the observed graphs
○ Tune the parameters of the model to find a close enough fit to the observed patterns

● Option 2: 
○ Define the likelihood of observing a graph, usually assuming edges are independent
○ Use maximum likelihood to find the model parameters

Fitting to observed graphs
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Likelihood of G given Probability matrix M and partitioning z

See how to derive the log likelihood here:: 
http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L6.pdf

Fitting the SBM to data

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L6.pdf

