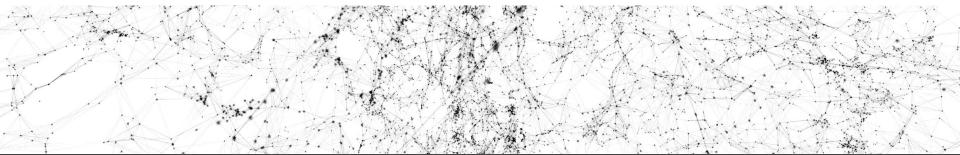


Analysis of complex interconnected data



Quick Notes

- Last assignment is out and is due on Oct 18th
 - http://www.reirab.com/Teaching/NS20/Assignment_3.pdf
 - Submit 2 files (report.pdf, code.zip) as a Group (pairs or two or individual) in Mycourses
- Please select your seminars
 - Due date for selection: Tuesday night (let me know if there are any issues)
 - Please put your name for **two** slots, do not change the entries that are already booked
 - Find the link to editable spreadsheet in slack or Mycourses
- Any questions?

Deadlines

- assignment 1 due on Sep. 20th
- assignment 2 due on Oct. 4th
- assignment 3 due on Oct. 18th
- project proposal slides due on Oct. 25th
- project proposal due on Nov. 1th
- Reviews (first round) due on Nov. 8th
- project progress report due on Nov. 22nd
- Reviews (second round) due on Nov. 29th
- project final report slides due on Dec. 1st
- project final report due on Dec. 6th
- Reviews (third round) due on Dec. 13th
- $\,\circ\,$ project revised report and rebuttal due on Dec. 20th
- note: dates are tentative, please check them for the updated deadlines

Dynamics- Quick recap

- Graphs & Time: diffusion on graph, cascade as the graph, dynamic graph, streaming graph
- Diffusion on Graphs
 - An entity that spreads/flows over the graph: disease, meme & news (social media), etc.
 - Epidemic modelling with contact graphs & between population dynamics
 - Classic compartment based models
 - Differential equations of compartment size changes (S, I, E, R)
 - Total outbreak size (asymptotic value of R) relates to the size of giant component in ER graph
 - We have an outbreak with the similar condition as having a giant component
 - Assume full mixing (= ER contact graph)
 - Contact graph based models
 - Simulate (each node has a state, simple but powerful)
 - some measures can be derived as well, e.g. an individual's probability of infection at early times is proportional to eigenvector centrality & outbreak sizes connects to percolation
- Dynamic Graphs
 - Dynamic network analysis: all statics extended, Patten, Measure and Module examples

Common prediction tasks

- Link Prediction
- Node Classification
- Graph Classification

What is unsupervised node classification?

Examples:

https://paperswithcode.com/task/link-prediction

https://paperswithcode.com/task/node-classification

https://paperswithcode.com/task/graph-classification

Given a graph G(V,E) predict future/missing links between nodes

- Modeling of network evolution
- Predict likely interactions, not explicitly observed (e.g. terrorist network monitoring)

See all

Mahdi Tayakoli

Professor (Robotics) at

the University of Alberta

O 19 mutual connections

Connect

Masoud Ardakani

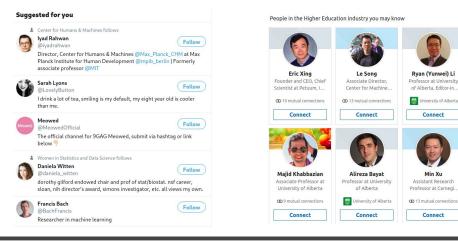
Professor of Electrical

Engineering (Universi..

OD 14 mutual connections

Connect

• Link recommendation: "friend" suggestion in social networks

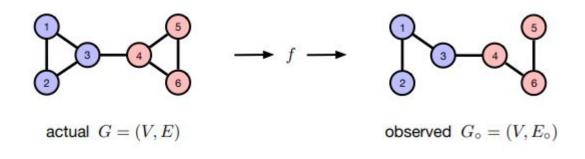


° (* 1997)

Predicting missing links

Only a subset of edges are observed

Sparse \Rightarrow searching for O(n) needles in a $\Theta(n^2)$ haystack



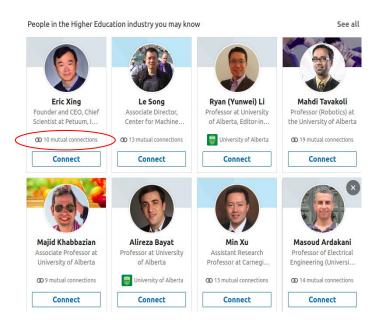
From Clauset's Slides

1

Score(i,j)

local topological predictors

- Number of common neighbors
- Number of shortest paths
- Product of degree
- Same cluster
- etc.

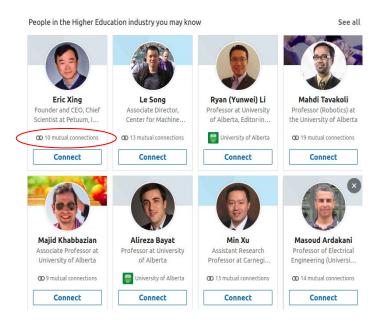


From Clauset's Slides

Score(i,j)

local topological predictors

- Number of common neighbors
- Number of shortest paths
- Product of degree
- Same cluster
- etc.



From Clauset's Slides

Jaccard coefficient

 $score(i, j) = Jaccard(i, j) + Uniform(0, \epsilon)$

What happens to the network if we add edges based on this?

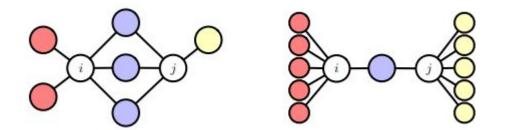
 $\operatorname{Jaccard}(i,j) = \frac{|\nu(i) \cap \nu(j)|}{|\nu(i) \cup \nu(j)|}$

From Clauset's Slides

Jaccard coefficient

score(i, j) = Jaccard(i, j) + Uniform(0, ε)

What happens to the network if we add edges based on this? Closes triangles



Example: Jaccard(i, j), what is it for this example ?

From Clauset's Slides

 $\operatorname{Jaccard}(i,j) = \frac{|\nu(i) \cap \nu(j)|}{|\nu(i) \cup \nu(j)|}$

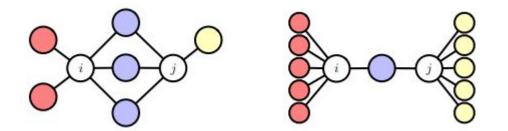


Jaccard coefficient

 $\operatorname{Jaccard}(i,j) = \frac{|\nu(i) \cap \nu(j)|}{|\nu(i) \cup \nu(j)|}$

score(i, j) = Jaccard(i, j) + Uniform(0, ε)

What happens to the network if we add edges based on this? Closes triangles



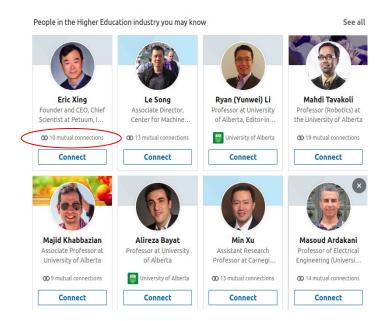
Example: Jaccard(i, j) of **0.50** (3/6) vs **0.091** (1/11)

From Clauset's Slides

Score(i,j)

local topological predictors

- Number of common neighbors
- Number of shortest paths
- Product of degree
 - nodes with high degrees are likely themselves to be connected 0
- Same cluster
- etc.

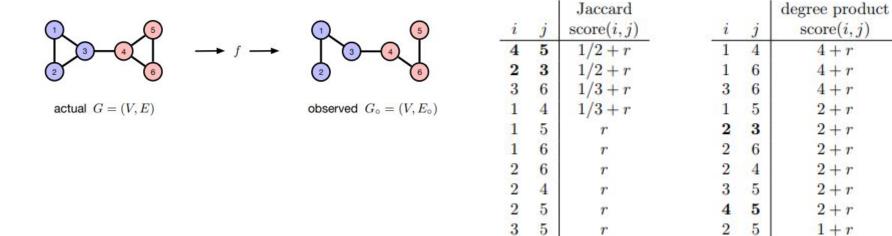


From Clauset's Slides

12

° (_____

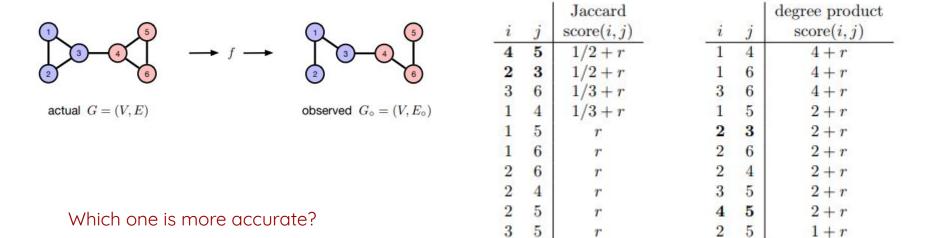
degree product: score(i, j) = $d_i d_i$ + Uniform(0, ϵ)



From Clauset's Slides

\$}

degree product: score(i, j) = $d_i d_i$ + Uniform(0, ϵ)



From Clauset's Slides

1

کی ا

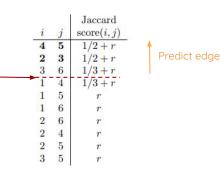
Measuring performance for ranked output

We can consider a threshold and convert it to a binary classification

{every i, j is either a missing link or not}

Accuracy = $(TP+TN)/(P+N)$)
Precision = TP / RP	
Recall = TP / P	{also called sensitivity}
F1 score = 2. Precision x Reca	ll / (Precision + Recall)
	{Harmonic mean}
Miss rate = FN / P	
Fallout = FP / N	{also called false positive rate}
False discovery rate = FP / R	Þ
Selectivity = TN / N	{also called specificity}
False omission rate = FN / RN	4
Negative predictive value = T	N / RN

	٦	Σ	
	TP	FP	RP
Results	FN	TN	RN
Σ	Ρ	N	



<u>ک</u>

الکیکی ا

Measuring performance

binary classification \Rightarrow every candidate i, j is either a missing link or not

TPR = TP/P (**recall**, sensitivity) Links above threshold / Total Positives

FPR = FP/N (**fallout**, false alarm) Non-links above threshold / Total Negatives

TPR = ?, FPR = ?

TPR = ?, FPR = ?

	Truth	Σ						
results	TP = 2	FP = 2	RP = 4					
1030113	FN = 0	TN = 6	RN = 6					
Σ	P = 2	N = 8						

	Truth	Σ					
roculte	TP = 0	FP = 4	RP = 4				
results	FN = 2	RN = 6					
Σ	P = 2	N = 8					
degree product							

Jaccard

		-i	j	Jaccard $score(i, j)$	i	j	degree product $score(i, j)$
		4	5	1/2 + r	1	4	4+r
li X Li	4	2	3	1/2 + r	1	6	4+r
. <u> </u>		3	6	1/3 + r	3	6	4+r
threshold		-1	4	1/3 + r	1	5	2+r
	1	-1	5	r	2	3	2+r
		1	6	r	2	6	2+r
¥		2	6	r	2	4	2+r
i	_	2	4	r	3	5	2+r
nonlink		2	5	r	4	5	2+r
		3	5	r	2	5	1+r

<u>ک</u>

Measuring performance

binary classification \Rightarrow every candidate i, j is either a missing link or not

TPR = TP/P (**recall**, sensitivity) Links above threshold / Total Positives

FPR = FP/N (**fallout**, false alarm) Non-links above threshold / Total Negatives

TPR = 2/2 = 1, FPR = 2/8=0.25

	Truth	Σ	
results	TP = 2	FP = 2	RP = 4
	FN = 0	TN = 6	RN = 6
Σ	P = 2	N = 8	

TPR = 0/2 = 0, FPR = 4/8=0.5

		Truth	Σ					
ł	results	TP = 0	FP = 4	RP = 4				
5	1630113	FN = 2	TN= 4	RN = 6				
	Σ	P = 2	N = 8					
	degree product							

Jaccard

	ſ	-i	j	Jaccard $score(i, j)$	i	j	degree product $score(i, j)$
		4	5	1/2 + r	1	4	4 + r
li X	4	2	3	1/2 + r	1	6	4+r
<u></u>		3	6	1/3 + r	3	6	4+r
threshold		-1	4	1/3 + r	1	5	2 + r
	ſ	-1	5	r	2	3	2+r
		1	6	r	2	6	2+r
×		2	6	r	2	4	2+r
nonlink	_	2	4	r	3	5	2+r
Ď		2	5	r	4	5	2+r
C		3	5	r	2	5	1+r

1

Measuring performance for ranked output

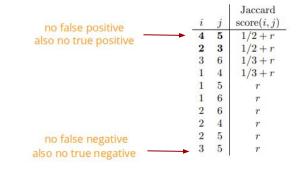
We can consider a threshold and convert it to a binary classification

{every i, j is either a missing link or not}

	Т	Σ	
	TP	FP	RP
Results	FN	TN	RN
Σ	Ρ	N	

Measures depend on the threshold

The tradeoff between precision and recall



° (_____

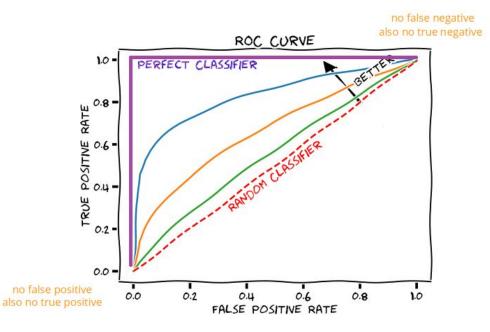
Threshold invariant: ROC & AUC

Receiver Operating Characteristic (ROC) as a function of prediction threshold

TPR(t) = TP(t)/P (recall, sensitivity at t) FPR(t) = FP(t)/N (fallout, false alarm at t)

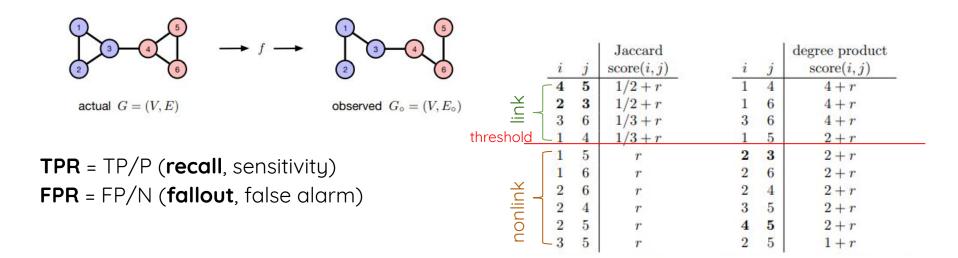
Area Under the Curve (AUC) of ROC

gives the probability of ranking a random positive edge higher than a random negative edge



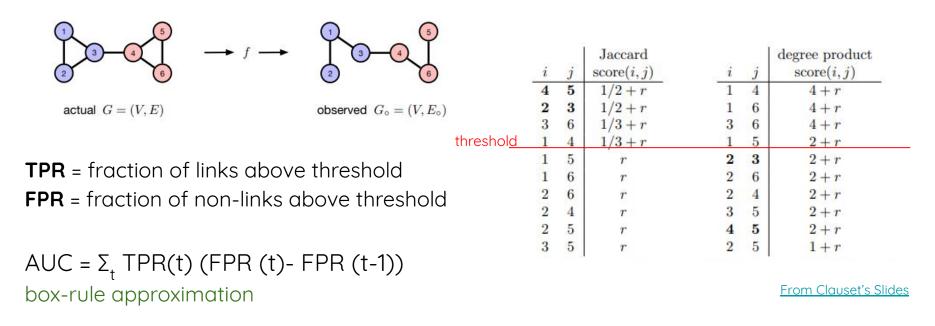
Threshold invariant: ROC & AUC, example

binary classification \Rightarrow every candidate i, j is either a missing link or not



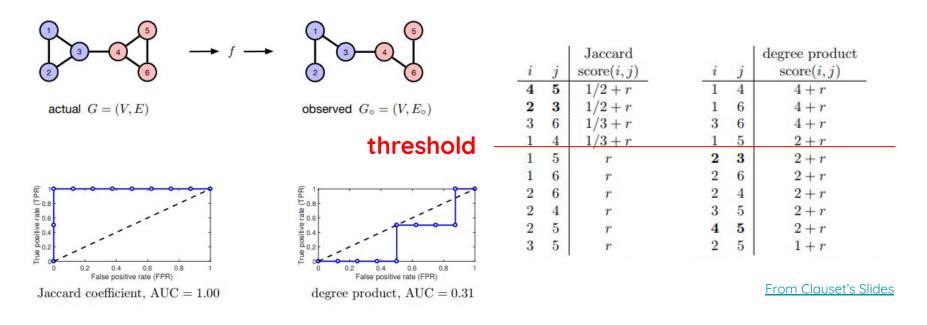
Threshold invariant: ROC & AUC, example

binary classification \Rightarrow every candidate i, j is either a missing link or not



Threshold invariant: ROC & AUC, example

binary classification \Rightarrow every candidate i, j is either a missing link or not



° (201

Topological Link Predictors

8		
	CN	common neighbors of i, j
	SP	shortest path between i, j
	LHN	Leicht-Holme-Newman index of neighbor sets of i, j
	PPR	j-th entry of the personalized page rank of node i
	PA	preferential attachment (degree product) of i, j
	JC	Jaccard's coefficient of neighbor sets of i, j
	AA	Adamic/Adar index of i, j
	RA	resource allocation index of i, j
	LRA	entry i, j in low rank approximation (LRA) via singular value decomposition (SVD)
	dLRA	dot product of columns i and j in LRA via SVD for each pair of nodes i, j
	mLRA	average of entries i and j 's neighbors in low rank approximation
	LRA-approx	an approximation of LRA
	dLRA-approx	an approximation of dLRA
	mLRA-approx	an approximation of mLRA
	LCC_i, LCC_j	local clustering coefficients for i and j
	AND_i, AND_j	average neighbor degrees for i and j
	$SPBC_i, SPBC_j$	shortest-path betweenness centralities for i and j
	CC_i, CC_j	closeness centralities for i and j
	DC_i, DC_j	degree centralities for i and j
	EC_i, EC_j	eigenvector centralities for i and j
	KC_i, KC_j	Katz centralities for <i>i</i> and <i>j</i>
	LNT_i, LNT_j	local number of triangles for i and j
	PR_i, PR_j	Page rank values for i and j
	LC_i, LC_j	load centralities for i and j

There are many **alternatives** to give a score to a given pair of nodes (i,j)

Many also used as similarity measures since homophily is a strong force in link creation

Ghasemian A, Hosseinmardi H, Galstyan A, Airoldi EM, Clauset A. Stacking Models for Nearly Optimal Link Prediction in Complex Networks. PNAS 2020.

See also A Survey of Link Prediction in Complex Networks, 2015 & Link prediction in complex networks: A survey, 2011

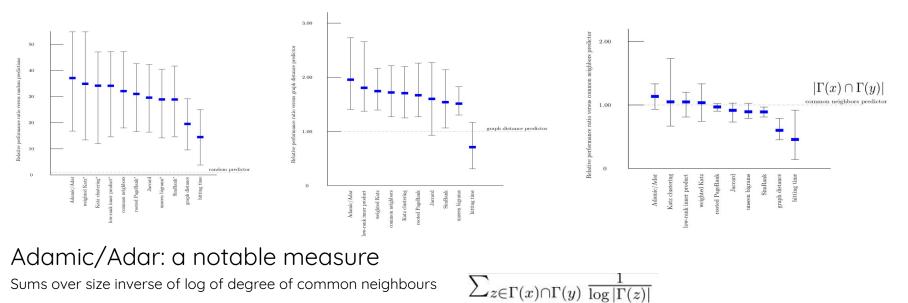
° (_____

Common neighbour is a decent predictor

Random

Graph distance

Common neighbor

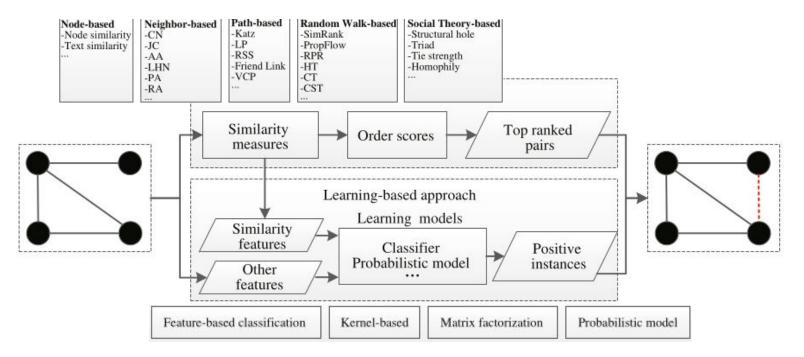


Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American society for information science and technology. 2007 May;58(7):1019-31.

° (_____

We can learn to link

Wang P, Xu B, Wu Y, Zhou X. Link prediction in social networks: the state-of-the-art. Science China Information Sciences. 2015 Jan 1;58(1):1-38.

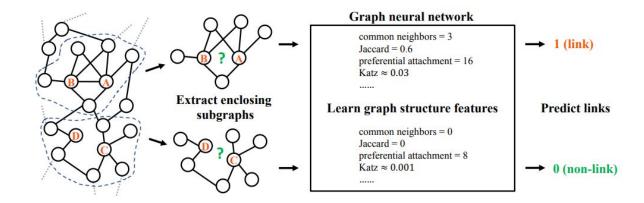


1

C

Learn the features as well

Instead of explicit features, automatically learn a "heuristic" that suits the current network e.g. by extracting a local enclosing subgraph around it, and uses a GNN to learn general graph structure features for link prediction



Zhang M, Chen Y. Link prediction based on graph neural networks. NeurIPS 2018

Learn the features as well

Instead of explicit features, automatically learn a "heuristic" that suits the current network e.g. by extracting a local enclosing subgraph around it, and uses a GNN to learn general graph structure features for link prediction

Table 1: Comparison with heuristic methods (AUC).

Data	CN	Jaccard	PA	AA	RA	Katz	PR	SR	ENS	WLK	WLNM	SEAL
USAir	93.80±1.22	89.79±1.61	88.84 ± 1.45	95.06±1.03	95.77±0.92	92.88±1.42	94.67±1.08	78.89 ± 2.31	88.96±1.44	96.63±0.73	95.95±1.10	96.62±0.72
NS	94.42±0.95	94.43±0.93	68.65 ± 2.03	94.45±0.93	94.45±0.93	94.85±1.10	94.89 ± 1.08	94.79±1.08	97.64±0.25	98.57±0.51	98.61±0.49	98.85±0.47
PB	92.04±0.35	87.41±0.39	90.14±0.45	92.36±0.34	92.46±0.37	92.92±0.35	93.54±0.41	77.08 ± 0.80	90.15±0.45	93.83±0.59	93.49±0.47	94.72±0.46
Yeast	89.37±0.61	89.32±0.60	82.20 ± 1.02	89.43±0.62	89.45 ± 0.62	92.24 ± 0.61	92.76±0.55	91.49 ± 0.57	82.36 ± 1.02	95.86 ± 0.54	95.62±0.52	97.91±0.52
C.ele	85.13±1.61	80.19 ± 1.64	74.79 ± 2.04	86.95 ± 1.40	87.49 ± 1.41	86.34±1.89	90.32±1.49	77.07 ± 2.00	74.94 ± 2.04	89.72±1.67	86.18±1.72	90.30±1.35
Power	58.80 ± 0.88	58.79 ± 0.88	44.33 ± 1.02	58.79 ± 0.88	58.79 ± 0.88	65.39±1.59	66.00±1.59	76.15±1.06	79.52±1.78	82.41±3.43	84.76 ± 0.98	87.61±1.57
Router	56.43±0.52	56.40 ± 0.52	47.58 ± 1.47	56.43 ± 0.51	56.43 ± 0.51	38.62±1.35	38.76±1.39	37.40±1.27	47.58 ± 1.48	87.42 ± 2.08	94.41 ± 0.88	96.38±1.45
E.coli	93.71±0.39	81.31±0.61	91.82 ± 0.58	95.36 ± 0.34	95.95±0.35	$93.50 {\pm} 0.44$	95.57±0.44	62.49 ± 1.43	$91.89{\pm}0.58$	96.94±0.29	97.21 ± 0.27	97.64±0.22

Table 2: Comparison with latent feature methods (AUC).

Data	MF	SBM	N2V	LINE	SPC	VGAE	SEAL
USAir	94.08±0.80	94.85±1.14	91.44±1.78	81.47±10.71	74.22±3.11	89.28±1.99	97.09±0.70
NS	74.55 ± 4.34	92.30±2.26	91.52±1.28	80.63 ± 1.90	89.94±2.39	94.04 ± 1.64	97.71±0.93
PB	94.30±0.53	93.90±0.42	85.79±0.78	76.95 ± 2.76	83.96±0.86	90.70±0.53	95.01±0.34
Yeast	90.28 ± 0.69	91.41±0.60	93.67±0.46	87.45±3.33	93.25 ± 0.40	93.88±0.21	97.20±0.64
C.ele	85.90±1.74	86.48±2.60	84.11±1.27	69.21±3.14	51.90±2.57	81.80 ± 2.18	89.54±2.04
Power	50.63 ± 1.10	66.57±2.05	76.22 ± 0.92	55.63 ± 1.47	91.78±0.61	71.20 ± 1.65	84.18 ± 1.82
Router	78.03±1.63	85.65±1.93	65.46±0.86	67.15 ± 2.10	68.79 ± 2.42	61.51±1.22	95.68±1.22
E.coli	93.76±0.56	93.82 ± 0.41	90.82±1.49	82.38 ± 2.19	94.92 ± 0.32	90.81±0.63	97.22±0.28

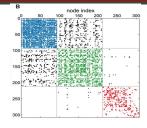
Zhang M, Chen Y. Link prediction based on graph neural networks. NeurIPS 2018

Link prediction approaches

- local topological predictors
- Global predictors, learning
 - \circ Model-based
 - Fit a model to data by maximizing likelihood which is defined in terms of edge probabilities \Rightarrow Pr (i \rightarrow j | θ)
 - E.g. stochastic block model
 - Optimization-based
 - Adding an edge increases a measure, e.g. Q modularity
 - Embedding-based
 - Proximity in the embedded space {put connected nodes close together}

From Clauset's Slides

Model based link prediction

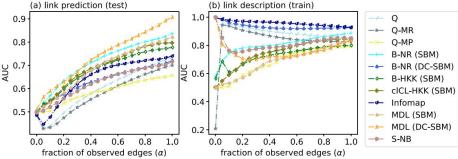


Infer Pr (i \rightarrow j | θ) for each candidate pair based on maximizing likelihood of the observed graph or other optimizations

SBM variants, Q-modularity and Infomap, e.g. Number of edges between module node i and j belong to divided by maximum possible edges between those modules

Assume links are
within modules

Abbreviation	Description	-
Q	modularity, Newman-Girvan	:
Q-MR	modularity, Newman's multiresolution	-
Q-MP	modularity, message passing	-
B-NR (SBM)	Bayesian stochastic block model, Newman and Reinert	· ,
B-NR (DC-SBM)	Bayesian degree-corrected stochastic block model, Newman and Reinert	
B-HKK (SBM)	Bayesian stochastic block model, Hayashi, Konishi and Kawamoto	-
cICL-HKK (SBM)	Corrected integrated classification likelihood, stochastic block model	-
Infomap	Map equation	-
MDL (SBM)	Minimum description length, stochastic block model	-
MDL (DC-SBM)	Minimum description length, degree-corrected stochastic block model	-
S-NB	Spectral with non-backtracking matrix	-

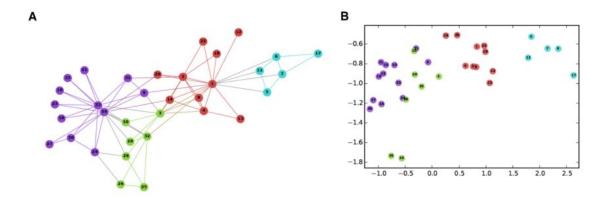


Evaluating Overfit and Underfit in Models of Network Community Structure, TKDE 2020

Embedding based link prediction

$G \rightarrow$ embed in vector space \rightarrow distance in the embedded space

Node embedding methods derive a vector representation per each node in the graph so that connected nodes have similar vectors \Rightarrow close in the embedded space means more likely to be linked



Matrix factorization based e.g. svd \Rightarrow Deep learning methods

e.g. deepwalk

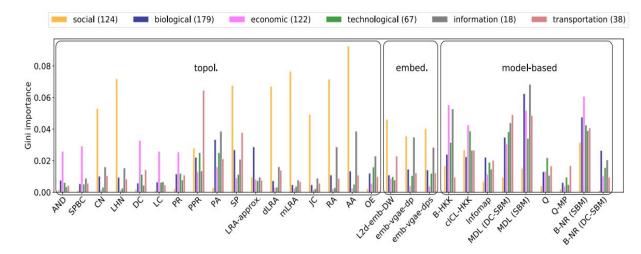
What embedding to use? Graph Representation Learning

See A Tutorial on Network Embeddings, 2018

Which one is the best?

no one predictor or family is best, or worst, across all realistic inputs

550 structurally diverse networks from six scientific domains



Ghasemian A, Hosseinmardi H, Galstyan A, Airoldi EM, Clauset A. Stacking Models for Nearly Optimal Link Prediction in Complex Networks. PNAS 2020.

° (_____

Which one to choose?

Stack the models

learns to apply the best individual predictor according to the input's characteristics

	4110		
algorithm	AUC	precision	recall
Q	0.7 ± 0.14	0.14 ± 0.17	0.67 ± 0.15
Q-MR	0.67 ± 0.15	0.12 ± 0.17	0.63 ± 0.13
Q-MP	0.64 ± 0.15	0.09 ± 0.11	0.59 ± 0.17
B-NR (SBM)	0.81 ± 0.13	0.13 ± 0.12	0.65 ± 0.22
B-NR (DC-SBM)	0.7 ± 0.2	0.12 ± 0.12	0.61 ± 0.24
cICL-HKK	0.79 ± 0.13	0.14 ± 0.14	0.58 ± 0.25
B-HKK	0.77 ± 0.13	0.11 ± 0.1	0.51 ± 0.26
Infomap	0.73 ± 0.14	0.12 ± 0.12	0.68 ± 0.13
MDL (SBM)	0.79 ± 0.15	0.14 ± 0.13	0.57 ± 0.3
MDL (DC-SBM)	0.84 ± 0.1	0.13 ± 0.11	0.78 ± 0.12
S-NB	0.71 ± 0.19	0.12 ± 0.13	0.66 ± 0.17
mean model-based	0.74 ± 0.16	0.12 ± 0.13	0.63 ± 0.21
mean indiv. topol.	0.6 ± 0.13	0.09 ± 0.16	0.53 ± 0.35
mean indiv. topol. & model	0.63 ± 0.15	0.09 ± 0.16	0.55 ± 0.33
emb-DW	0.63 ± 0.23	0.17 ± 0.19	0.42 ± 0.35
emb-vgae	0.69 ± 0.19	0.05 ± 0.05	0.69 ± 0.21
all topol.	0.86 ± 0.11	0.42 ± 0.33	0.44 ± 0.32
all model-based	0.83 ± 0.12	0.39 ± 0.34	0.3 ± 0.29
all embed.	0.77 ± 0.16	0.32 ± 0.32	0.32 ± 0.31
all topol. & model	0.87 ± 0.1	0.48 ± 0.36	0.35 ± 0.35
all topol. & embed.	0.84 ± 0.13	0.4 ± 0.34	0.39 ± 0.33
all model & embed.	0.84 ± 0.13	0.36 ± 0.32	0.36 ± 0.31
all topol., model & embed.	0.85 ± 0.14	0.42 ± 0.34	0.39 ± 0.33

550 structurally diverse networks from six scientific domains

Ghasemian A, Hosseinmardi H, Galstyan A, Airoldi EM, Clauset A. Stacking Models for Nearly Optimal Link Prediction in Complex Networks. arXiv preprint arXiv:1909.07578. 2019 Sep 17.

Which one to choose?

Stack the models

learns to apply the best individual predictor according to the input's characteristics

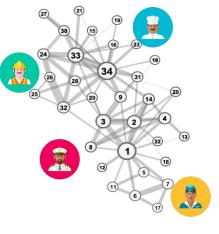
Algorithm	AUC	Precision	Recall	
Q	0.89 ± 0.07	0.42 ± 0.13	0.85 ± 0.08	
Q-MR	0.87 ± 0.07	0.38 ± 0.16	0.78 ± 0.07	
Q-MP	0.86 ± 0.08	0.25 ± 0.07	0.83 ± 0.09	
B-NR (SBM)	0.93 ± 0.06	0.3 ± 0.08	0.85 ± 0.12	
B-NR (DC-SBM)	0.93 ± 0.07	0.28 ± 0.08	0.88 ± 0.08	
CICL-HKK	0.93 ± 0.08	0.34 ± 0.1	0.85 ± 0.14	
B-HKK	0.88 ± 0.07	0.17 ± 0.05	0.79 ± 0.17	
nfomap	0.91 ± 0.04	0.29 ± 0.08	0.83 ± 0.05	
MDL (SBM)	0.94 ± 0.07	0.31 ± 0.09	0.87 ± 0.16	
MDL (DC-SBM)	0.93 ± 0.09	0.26 ± 0.09	0.89 ± 0.11	
S-NB	0.94 ± 0.07	0.3 ± 0.1	0.87 ± 0.08	
mean model-based	0.91 ± 0.08	0.3 ± 0.12	0.84 ± 0.12	
mean indiv. topol.	0.64 ± 0.19	0.2 ± 0.27	0.56 ± 0.33	
mean indiv. topol. & model	0.7 ± 0.21	0.22 ± 0.25	0.62 ± 0.32	
emd-DW	0.95 ± 0.1	0.45 ± 0.16	0.92 ± 0.13	
emb-vgae	0.95 ± 0.08	0.09 ± 0.02	0.96 ± 0.09	
all topol.	0.97 ± 0.08	0.89 ± 0.21	0.88 ± 0.2	
Il model-based	0.95 ± 0.07	0.76 ± 0.2	0.68 ± 0.17	
all embed.	0.95 ± 0.11	0.75 ± 0.23	0.74 ± 0.23	
all topol. & model	0.98 ± 0.06	0.89 ± 0.22	0.88 ± 0.19	
all topol. & embed.	0.96 ± 0.1	0.86 ± 0.22	0.83 ± 0.25	
Il model & embed.	0.96 ± 0.09	0.78 ± 0.21	0.74 ± 0.22	
all topol., model & embed.	0.97 ± 0.09	0.86 ± 0.23	0.84 ± 0.23	

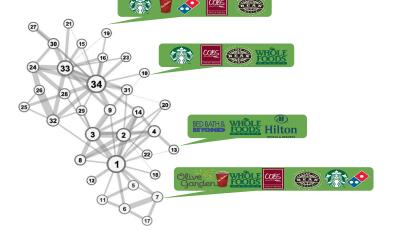
Near perfect in social networks

Ghasemian A, Hosseinmardi H, Galstyan A, Airoldi EM, Clauset A. Stacking Models for Nearly Optimal Link Prediction in Complex Networks. arXiv preprint arXiv:1909.07578. 2019 Sep 17.

Link Prediction in Attributed Graphs

Individual characteristics (attributes) & relations (graph) Annotated networks, metadata on nodes, side information





characteristics

age, occupation, salary, sex, etc.

activity & interest

check-ins, page-likes, group memberships, movies

Link Prediction in Attributed Graphs

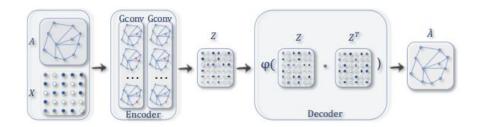
Interplay between attributes and relations

- Social **selection**: similarity of individuals' characteristics motivates them to form relations
- Social **influence**: Characteristics of individuals may be affected by the characteristics of their relations

POSITIVE FEEDBACK LOOP CHICKENS EGG

Link Prediction in Attributed Graphs

Graph Neural Networks get attributed graphs as the input and can be used for many tasks including link prediction



numerous methods, multiple surveys, <u>e.g. this one (2019)</u>, two of the notable works: <u>GCN</u> (2016), <u>GAT</u> (2018), an excellent <u>course last term</u> on this & a <u>new book</u>!

Approach	Category	Inputs	Pooling	Readout	Time Complexity
GNN* (2009) [15]	RecGNN	A,X,X^e		a dummy super node	
GraphESN (2010) [16]	RecGNN	A, X		mean	-
GGNN (2015) [17]	RecGNN	A, X	-	attention sum	-
SSE (2018) [18]	RecGNN	A, X		-	-
Spectral CNN (2014) [19]	Spectral-based ConvGNN	A, X	spectral clustering+max pooling	max	$O(n^3)$
Henaff et al. (2015) [20]	Spectral-based ConvGNN	A, X	spectral clustering+max pooling		$O(n^3)$
ChebNet (2016) [21]	Spectral-based ConvGNN	A, X	efficient pooling	sum	O(m)
GCN (2017) [22]	Spectral-based ConvGNN	A, X		-	O(m)
CayleyNet (2017) [23]	Spectral-based ConvGNN	A, X	mean/graclus pooling		O(m)
AGCN (2018) [40]	Spectral-based ConvGNN	A, X	max pooling	sum	$O(n^2)$
DualGCN (2018) [41]	Spectral-based ConvGNN	A, X			O(m)
NN4G (2009) [24]	Spatial-based ConvGNN	A, X		sum/mean	O(m)
DCNN (2016) [25]	Spatial-based ConvGNN	A, X	~	mean	$O(n^2)$
PATCHY-SAN (2016) [26]	Spatial-based ConvGNN	A,X,X^e		concat	-
MPNN (2017) [27]	Spatial-based ConvGNN	A, X, X^e	-	attention sum/ set2set	O(m)
GraphSage (2017) [42]	Spatial-based ConvGNN	A, X	8	8	-
GAT (2017) [43]	Spatial-based ConvGNN	A, X			O(m)
MoNet (2017) [44]	Spatial-based ConvGNN	A, X		-	O(m)
PGC-DGCNN (2018) [46]	Spatial-based ConvGNN	A, X	sort pooling	attention sum	$O(n^3)$
CGMM (2018) [47]	Spatial-based ConvGNN	A, X	-	concat	-
LGCN (2018) [45]	Spatial-based ConvGNN	A, X			-
GAAN (2018) [48]	Spatial-based ConvGNN	A, X	-		O(m)
FastGCN (2018) [49]	Spatial-based ConvGNN	A, X		-	-
StoGCN (2018) [50]	Spatial-based ConvGNN	A, X			
Huang et al. (2018) [51]	Spatial-based ConvGNN	A, X		-	~
DGCNN (2018) [52]	Spatial-based ConvGNN	A, X	sort pooling	-	O(m)
DiffPool (2018) [54]	Spatial-based ConvGNN	A, X	differential pooling	mean	$O(n^2)$
GeniePath (2019) [55]	Spatial-based ConvGNN	A, X	-	-	O(m)
DGI (2019) [56]	Spatial-based ConvGNN	A, X	5	-	O(m)
GIN (2019) [57]	Spatial-based ConvGNN	A, X		concat+sum	O(m)
ClusterGCN (2019) [58]	Spatial-based ConvGNN	A, X		-	