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Modules
Analysis of complex interconnected data

Slides mostly based on 
newman’s book
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● Reminder second assignment is out, due on Oct 4th
○ http://www.reirab.com/Teaching/NS20/Assignment_2.pdf

○ Submit single entry as a Group (pairs or two or individual) in Mycourses

● Use slack for easier communications
● Any questions?

Quick Notes

http://www.reirab.com/Teaching/NS20/Assignment_1.pdf
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Quick Recap of Centrality Measures 
● Degree Centrality

○ count the number of neighbours, ignores their importance

● Eigenvalue Centrality 
○ consider importance of connections, gives zero to nodes not in scc or its out 

component, in extreme case of an acyclic networks, e.g. citation networks, all nodes get zero score

● Katz Centrality 
○ avoid zeros by giving everyone a basic importance

● PageRank 
○ divide importance on how many connections it is passed over to

● HITS
○ consider two types of importance, hubs and authorities 

● Closeness centrality 
○ average how close you are to the rest 

● Betweenness centrality
○ count what fraction of shortest paths pass through you
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Facebook

Yeast protein 
protein interaction 
networks

C. elegans 
neural network

Network are Modular

Twitter
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Example Applications
Module identification in biological networks

● Protein complexes and functional modules in 
PPI networks (Spirin & Mirny, PNAS 2003) 

○ protein complexes: proteins that interact to carry out a task as a 
single complex unit, e.g., RNA splicing

○ functional units: proteins that bind at different time to participate in a 
cellular process, e.g., communicating a signal from the surface of the 
cell to the nucleus

● Representation of the metabolic networks (R 
Guimerà & Amaral, Nature 2005)

○ ultra-peripheral metabolites (that have all their connections 
inside their modules) have the highest evolutionary loss rate, 
whereas connector hubs (that connect to most of the other 
modules) are the most conserved across the species
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Modules give a coarse-grained representation of the structure

Also referred to as meso-scale, cluster, communities, etc.

Modules as Coarse Representation

Facebook

Students
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Clustering a.k.a Community Detection
Given a graph, how to cluster the nodes into modules?

algorithm
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Spectral clustering 

Uses the relation between connectivity & Laplacian matrix

Recall: 

Laplacian Matrix: L = D - A

[[3 0 0 0 0]
 [0 3 0 0 0]
 [0 0 4 0 0]
 [0 0 0 2 0]
 [0 0 0 0 2]]

D

[[0 1 1 1 0]
 [1 0 1 0 1]
 [1 1 0 1 1]
 [1 0 1 0 0]
 [0 1 1 0 0]]

A

[[ 3 -1 -1 -1  0]
 [-1  3 -1  0 -1]
 [-1 -1  4 -1 -1]
 [-1  0 -1  2  0]
 [0  -1 -1  0  2]]

L

A: adjacency matrix 

D: diagonal matrix of degrees

example
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Spectral clustering 
Uses the relation between connectivity & Laplacian matrix

Recall the Spectral Spectrum
● Lu = λu : Eigenvalues of Laplacian Matrix
● We have n eigenvalues which we call Laplacian Spectrum:

 0 = λ0 ≤ λ1 ≤ λ2 ≤ … ≤ λn
● λ0 is always zero since we have L(1,1...1) = 0 
● λ0 = λ1 … = λk  = 0 ⇒ k is number of connected components
● Largest is bounded by twice the maximum degree in G
● E = ½ Σdi = ½ Tr(L) = ½ Σλi 
● Spectral gap: smallest nonzero eigenvalue
● Fiedler vector: eigenvector corresponding to the spectral gap
● Spectral ordering: Fiedler vector sorted
● Laplacian Spectrum relates to graph connectivity & clustering
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Consider function f that 
maps vertices to a value

fTLf = fTDf -fTAf = ∑i difi
2  - ∑ij  fifj Aij 

= ½ [ ∑i difi
2  - 2 ∑ij  fi fj Aij + ∑i difi

2 ] 

= ½ ∑ij Aij( fi - fj )
2 

Laplacian Matrix & Smoothness 
● f = (f1, ..., fn) function on Graph

○ f ∊ Rn ⇒  fTLf = ½ ∑ij Aij( fi - fj )
2 

See this for more details.

Measures how much the value of f is smooth over 
edges, i.e. the difference of values for connecting nodes 

How to find modules?

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf


Comp 596: Network Science, Fall 2020 14

Consider function f that 
maps vertices to a value

fTLf = fTDf -fTAf = ∑i difi
2  - ∑ij  fifj Aij 

= ½ [ ∑i difi
2  - 2 ∑ij  fi fj Aij + ∑i difi

2 ] 

= ½ ∑ij Aij( fi - fj )
2 

Laplacian Matrix & Smoothness 
● f = (f1, ..., fn) function on Graph

○ f ∊ Rn ⇒  fTLf = ½ ∑ij Aij( fi - fj )
2 

See this for more details.

Measures how much the value of f is smooth over 
edges, i.e. the difference of values for connecting nodes 

How to find modules? Find f that give smoothest 
results, i.e, minimizes this

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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Spectral Clustering
● f = (f1, ..., fn) function on Graph

○ f ∊ Rn ⇒  fTLf = ½ ∑ijAij( fi-fj )
2 

● Cut edges = ¼ xTL x
● Find best balanced cut

○ Minimize given xi∊{+1,-1} &  Σixi = 0
○ What does it mean?

● xi∊{+1,-1} ⇒  xi ∊ R & Σixi
2 =n (xTx=n)

○ Min ¼ xTL x = ¼ n v1
T

 L v1 = ¼ n λ1
Courant Fisher Minmax Theorem 

● Second smallest eigenvalue
⇒ sparsest cut

● Signs of corresponding eigenvector 

xi = +1 if i ∊ 1 else -1

+1

-1
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Normalized Graph Laplacian 
● Symmetric normalization 

○ Lsym = D−1/2 L D−1/2 = I − D−1/2 A D−1/2

● Random walk normalization 

○ Lrw = D−1 L = I − D−1 A

○ ⇒ Normalized cut (Ncut), edges

Cut = 2
NCut = 2 ( 1/12 + 1/18  )

K Clusters? Use k-means on top k 
eigenvectors (each node is represented with k features)

Further reading? See this 

Many successful applications including  image segmentation but not the best 
choice for finding modules in real world graph. 
How can we define a better objective for finding modules in real 
world graph ?

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
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In the example 
above

Objectives for quality of a community

Globally-defined quality function to 
partition the whole network 

● Q-modularity (Newman 2003)

Locally defined quality function for one 
subset of nodes in a network 

● Conductance (Sinclair & Jerrum 1989)

● Normalized Cut (Shi & Malik 2000)

Q(             ) f (             )

cS = cut size: number of edges going out of module
mS = module size: number of edges inside module

= 3/(2*7+3)

= 3/(2*7+3) 
+ 3/(2*(12)+3)
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Locally defined objectives 
Defining and evaluating network communities based on ground-truth (Yang, J., Leskovec, J., Knowledge and Information Systems, 2015)

● Community detection from a seed node 
○ Score proximity of nodes from seed using random walk
○ Expand from the closest node, and compute the objective
○ Local optima of objective correspond to detected communities
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● Number of links between them is more than chance
○ Modularity Q (Newman & Grivan, Phys Rev E, 2004)

■ FastModularity (Clauset, Phys Rev E 2005); Louvain (Blondel et al., J Stat Mech Theory Exp,  2008) 

● Within them a random walk is more likely to trap 
○ Walktrap (Pons & Latapy, ISCIS 2005)

● Coding gives efficient compression of any random walk
○ Infomap (Rosvall & Bergstrom, PNAS 2008; PloS One 2010)

● Follow their closest leader 
○ TopLeader 

Defining the Modular Structure of Networks 
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TopLeaders: K-medoid for graphs
● Iteratively assigns nodes to leaders, selects leaders

○ Leader: central member in community
○ Community: set of followers surrounding a leader
○ Assigning followers to closest leader based on neighbourhoods

● Initialization requires k (central nodes with few neighbours in common)

● Also identifies outliers and hubs in the network
● Closeness measure based on diffusion of innovation 

22
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(Girvan and Newman, PNAS 2002)

1. Calculate the betweenness for all edges in the 
network

2. Remove the edge with the highest betweenness
3. Recalculate betweennesses for all edges 

affected by the removal
4. Repeat from step 2 until no edges remain
5. Where to cut?

A divisive hierarchical clustering

https://networkkarate.tumblr.com/

First community 
detection algorithm 

https://networkkarate.tumblr.com/
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Example

A divisive hierarchical clustering

Recursively remove 
bridges, edges with 
high edge-betweenness

In the resulted 
dendrogram, 
evaluate M for flat 
modules obtained at 
different levels

How to define M?
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Originally proposed to know where to cut the dendrogram, but we optimize this directly in practice

Measure the difference between the fraction of edges that are within the 
clusters and the expected such fraction if the edges were randomly 
distributed when degrees are fixed

Use configuration model as the null model

How good is a clustering of a network?

Kronecker delta: 1 only if i & j are 
in the same cluster, Ci = Cj

ki = degree of node i
M = total edges
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Sums over all pair of nodes in the same clusters

We can reformulate this to sum over clusters

eij : fraction of edges between cluster i and j 

ai = ei. = ∑j eij 

Q-modularity

Kronecker delta: 1 only if i & j are 
in the same cluster, Ci = Cj

ki = degree of node i
M = total edges



Comp 596: Network Science, Fall 2020 28

Outline
● Quick Notes
● Quick Recap of Centrality Measures 
● Modules 

○ Real graphs are modular
○ Spectral clustering 
○ Objectives for quality of a module
○ TopLeaders
○ Using Betweenness Centrality
○ Modularity Optimization, FastModularity & Louvain
○ Resolution limits of Modularity
○ Link clustering
○ Evaluating clustering results



Comp 596: Network Science, Fall 2020 29

An agglomerative hierarchical clustering
(Newman, Phys. Rev. E 2004)

1. Start from every node a cluster 
2. Initialize e as the adjacency matrix
3. Merge two cluster that give the highest gain in Q:

4. Update the e by adding together the rows and columns 
corresponding to the joined communities

5. Go to step 3 until no increase in Q
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● Divisive hierarchical clustering (Girvan and Newman, PNAS 2002)
○ Removes the edge with highest betweenness
○ All pairs shortest paths: expensive to compute
○ can be approximated but still not scalable

● Agglomerative hierarchical clustering (Newman, Phys. Rev. E 2006)
○ Start from every node a cluster, and merge
○ O(n(m+n)) : n, m: number of nodes and edges
○ With heap based data structure ⇒  O(m log n)  (Clauset et al., 2004)

   ⇒FastModularity

Modularity optimization



Comp 596: Network Science, Fall 2020 31

Agglomerative method tends to produce super-communities

wuv : normalized weight of the edge from node u to node v

Gain of adding node u to community i is:

Move nodes around (only through links), aggregate clusters, repeat

(Blondel et al. Journal of Statistical Mechanics, 2008)

Louvain, another agglomerative method 

O(n log n) 
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very different divisions of the network 
but same Q

resolution limit, the inability to see 
communities in a network if they are 
too small, relative to the size of the 
network as a whole 

κ 1 and κ 2 be the sums of the degrees 
of the nodes in each of the two groups

Q problems

5000 edges, size 50 
(degree sum 100)
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Overlap, hierarchy, periphery 
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Link Clustering
Find overlapping clusters naturally by 
clustering edges instead of nodes

The similarity of a link pair is 
determined by the neighborhood of 
the nodes connected by them.

Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale 
complexity in networks. nature. 2010 Aug;466(7307):761-4.
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Evaluating the Modular Structure of Networks 

which one

FastModularity Louvain Walktrap TopLeader 



Evaluation of Community Detection
Validation on benchmarks for which we know the ground-truth, a common practice

  ( G1  , U1 )
  ( G2 , U2 )
  ( G3 , U3 )
        

G

Ground-Truth

U



Validation on Benchmarks
Compare with ground-truth

FastModularity Louvain Walktrap TopLeader InfoMap

Ground-Truth



(              ,                )

Validation on Benchmarks
Agreement measure

Walktrap TopLeader InfoMap

Ground-Truth



● Set matching
● Information theoretic 
● Pair counting

Clusterings Agreement Measures
Current families, background

A(            ,               )



Clusterings Agreement Measures
Set matching, background 
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Clusterings Agreement Measures
Information theoretic, background  
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Pair counting● Pair counting
● Information theoretic 

Generalization
Linking the two families
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Generalization
Measuring dispersion
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Generalization
Subsumes pair counting 
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Generalization
Subsumes information theoretic 
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Information 



φ( ) - φ( ) - φ( )
φ( ) 

Generalization
Second normalization 

B

R

Y

B R YG
18

11

5

12 6 11 5

Σ

Σ

12 6 0 0

0 0 11 0

0 0 0 5

34

➢ φ(x) = x2                  ⇒   ARI
➢ φ(x) = x log x   ⇒   NMI

φ(   x    ) φ(   x    ) φ(   x    )+ + + . . .

        φ( ) - φ( ) - φ( )                       



➢ φ(x) = x2                  ⇒   ARI

➢ φ(x) = x log x   ⇒   NMI

●
●

A generalized distance with a plug-in function 

➢ φ(x) = x2                  ⇒   RI

➢ φ(x) = x log x   ⇒   VI

Generalization
Subsumes common measures

Normalization 1 Normalization 2


