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Quick Notes

e Reminder, first assignment due in a week
O http://www.reirab.com/Teaching/NS20/Assignment_1.pdf
o Any questions for the assignment?
o Submit single entry as a Group in Mycourses

e Use slack for easier communications
o Let me know if you didn’t get an invite

Deadlines

e Anyone new in the class?

assignment 1 due on Sep. 20th
assignment 2 due on Oct. 4th
assignment 3 due on Oct. 18th

o project proposal slides due on Oct. 25th
o project proposal due on Nov. 1th

Reviews (first round) due on Nov. 8th

o project progress report due on Nov. 22nd

Reviews (second round) due on Nov. 29th

o project final report slides due on Dec. 1st
o project final report due on Dec. 6th

Reviews (third round) due on Dec. 13th
project revised report and rebuttal due on Dec. 20th
note: dates are tentative, please check them for the updated deadlines
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e Patterns Quick recap

e Models

ER model

BA model

SBM

Configuration model

FF model

Kronecker graph model

Log likelihood fitting to observed graphs
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Patterns: quick recap

e Sparsity Pattern
o mean degree << N-1 (or E << Emax)
e Scale Free Pattern
o heavy tailed degree distribution
e Assortativity Pattern
o positive or negative correlation between degree of connecting nodes
e T[ransitivity Pattern
o high ratio of closed triangles (clustering coefficient)
e Small world Pattern
o small average shortest path

e Connectivity & eigenvalues of Laplacian matrix
o number of zero eigenvalues gives the number of connected components
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Erdds-Rényi Model (ER)

. Paul Erdés Alfréd Rényi
e Introduced in 1960 (1913-1996)  (1921-1970)

e Basis of random graph theory
e Simple model that results in small-world graphs

e Parameters: ER(n, p) or ER(n, M)

o n:number of nodes . _

N Side note:
o p: probability of an edge between any two nodes What is Erdés number?
o m:number of edges ‘

e Generation: all edges are equally likely so toss

n(n-1)/2 coins
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Erdds-Rényi Model (ER)

For p = 0 we have <> = 0, hence all
nodes are isolated. Therefore the " :
largest component has size NG =1 and
NG/N—O for large N.

For p =1 we have <= N-1, hence the ’ "
network is a complete graph and all
nodes belong to a single component.
Therefore NG = N and NG/N =1

At which p we see a giant component?
(NG/N is finite; NG grows in proportion to N)
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Erdds-Rényi Model (ER): properties
We can derive many properties of ER analytically

derive the expected value of a property as  (z) =Y (G) x Pr(G)

G
Where probability of observing a given graph is  P(G) = ﬁ

or p(6)=pm1-p)a) " m

a

T p=0.03, N=100
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Erdds-Rényi Model (ER): degree distribution

k

P(k) = Jp"(l -p)

Select k . / probability of
\ nodes from N-1 E;(\)/ibncgbllrtegd(;fes missing N-1-k edges
S <k>=p(N-1) o} =p(l-p)(N-1)

For large N and small k, we can use the following approximations:

Poisson degree distribution P(k) — €_<

P(k)

k
e <k >
k!
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Erdds-Rényi Model (ER): degree distribution

Exact Result Large N limit
-binomial distribution- -Poisson distribution-
| | | | L | L | | L | |
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node index

Stochastic Block Models (SBM)

e Generalized ER to created block-structured graphs
e Parameters:

o n:number of nodes

o k?probabilities: P,
o kdisjoint sets that divide the n nodes

e Generation: create (within, between) edges similar
to ER for the corresponding subsets of nodes with
the corresponding probability
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Configuration model

By Mark Newman, generalizing ER to specific degree distribution

Parameters: degree sequence (can be easily sampled from any distribution)
Generation: assign slots, randomly connect them
Serves as a null model for community detection

o edges are distributed randomly given the degrees are fixed
o communities that are not formed randomly should deviate from this

o more on this later
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Albert Barabasi Model (AB)

e Introduced in 1999, a.k.a Barabdsi-Albert (BA) model

e Uses preferential attachment which gives scale-free graphs

e Parameters: BA (n,m)
o n:number of nodes \A 95
o m:average degree

e Generation:
o add one node at the time, add m connections per new node if possible
o the probability of forming a connection to an existing node is

proportional to its degree, i.e. p(i) = d. /Zjdj
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Forest Fire model (FF)

e By Leskovec, 2005

e To follow patterns observed in real-world graphs
o denser over time, the average degree increasing, and the diameter decreasing

e Parameters:n, pand rp
o n:number of nodes
o p: forward burning probability
o r:backward burning probability

e Generation:
o add anode at atime, connect the node to an ambassador, chosen uniformly at random
o then, the new node recursively forms a random number of connections with the neighbours
of every node it connects to -outlinks to specific number of inlink and outlink neighbours,
drawn from geometric distributions with means of p/(1 -p) and r/(1 -r) respectively
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Forest Fire model (FF)

e Heavy-tailed degree distribution
o rich get richer: older nodes have more chances to become ambassadors
e Densifies
o newly entered node has more links to neighbours close to its ambassador
e Can result in shrinking diameter | o™
2+ (RO e = 12
o Which is observed in real-world networks : | Clique-like
Increasing "' E graph
diameter 1
: Constant
Shar 1 diameter
by 0
Decreasin
{ o " """" _ 7 dian'}eterg
0 02 04 06 08 1
Forward burnina probability
17 —
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Kronecker product of matrices

Kronecker graph model I

a B aB ... a,B
C=ARB= . .

By Leskovec, 2010 B @B B

Consider a small initiator matrix, use kronecker products to get the adjacency
MAatrix as Ky= Ki®Ki®...Ki = K ®K,

k times
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(d) Adjacency matrix

Ole of K = K| @K
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Kronecker graph model

Stochastic Kronecker graph, initiator matix is probabilities and edges are drawn
for the final graph with the corresponding probabilities

If all probabilities are equal in the initial matrix, this becomes equivalent to ER

the initiator matrix can be set based on real-world data to sample similar
graphs, by searching over what matrix is more likely to give the observed
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Fitting to observed graphs

e Option 1.
o Measure and plot different characteristics of the observed graphs
o Tune the parameters of the model to find a close enough fit to the observed patterns

e Option 2:
o Define the likelihood of observing a graph, usually assuming edges are independent
o Use maximum likelihood to find the model parameters

generation
...... MOoR, ™ s
| Pr(G0) | ' G=(V, B)!
"""""""" N~ Tam
inference
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Fitting the SBM to data

Likelihood of G given Probability matrix M and partitioning z

L(G|M,z) =[] Pr(i = j| M, 2)

irj
= [[ Pri—jIM,2) J] 1-Pr(i—j|M,z2)
(i.)€E (i) €E

= I M. I (1-M..)

(ij)EE (i.J)€E

Liaa = 0.000244 . ...

L g00a = 0.043304.
lllﬁh ad — —8.3178...

InLy0q = —3.1395..
Mypag | red  blue

red | 4/6 2/8

See how to derive the log likelihood here:
http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_ 2017 _L6.pdf Mg | Bl
hlli(e]' iﬁ; ;;3 bll;e 2/8 1/1
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