
Comp 596: Network Science, Fall 2020

Patterns
Analysis of complex interconnected data
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● Reminder, first assignment due in a week
○ http://www.reirab.com/Teaching/NS20/Assignment_1.pdf

○ Any questions from the description?
○ Join a Group in Mycourses
○ Submit the assignment in Mycourses
○ For assignments, 2^k% of the grade will be deducted per k days of delay.

● Use slack for easier communications
○ Let me know if you didn’t get an invite

● Anyone new in the class?

Quick Notes

http://www.reirab.com/Teaching/NS20/Assignment_1.pdf
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● Marginals of A ⇒ Degrees 
○ di = Σj Aij

● Sum(A) = ΣiΣjAij= Σidi = ?

Marginals of Adjacency Matrix

● If directed indegree and outdegree
○ din

i = Σj Aji and dout
i = Σj Aij 



Comp 596: Network Science, Fall 2020 6

● Quick Notes
○ Assignment 1, slack

● Adjacency matrix and degree
● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● Connectivity & eigenvalues of Laplacian matrix
● How to pattern?

Outline



Comp 596: Network Science, Fall 2020 7

● Marginals of A ⇒ Degrees 
○ di = Σj Aij

● Sum(A) = ΣiΣjAij= Σidi = 2E

● mean degree: 1/n ΣiΣjAij= 1/n Σidi

● Density: ΣiΣjAij / n(n-1)

Marginals of Adjacency Matrix
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mean degree << N-1 
(or E << Emax)

WWW (Stanford-Berkeley):  N=319,717 mean degree=9.65
Social networks (LinkedIn): N=6,946,668 mean degree=8.87
Communication (MSNIM): N=242,720,596 mean degree=11.1
Co-authorships (DBLP):  N=317,080   mean degree=6.62
Internet (AS-Skitter): N=1,719,037 mean degree=14.91
Roads (California): N=1,957,027 mean degree=2.82
Proteins (S.Cerevisiae):  N=1,870 mean degree=2.39 

(Source: Leskovec et al., Internet Mathematics, 2009)

Adjacency matrix is filled with zeros!

(Density of the matrix : WWW=1.51*10-5, MSN IM= 2.27*10-8)

Implications? 

Real-world networks are sparse

From Leskovec’s slides

http://snap.stanford.edu/class/cs224w-2017/handouts.html
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mean degree << N-1 
(or E << Emax)

WWW (Stanford-Berkeley):  N=319,717 mean degree=9.65
Social networks (LinkedIn): N=6,946,668 mean degree=8.87
Communication (MSNIM): N=242,720,596 mean degree=11.1
Co-authorships (DBLP):  N=317,080   mean degree=6.62
Internet (AS-Skitter): N=1,719,037 mean degree=14.91
Roads (California): N=1,957,027 mean degree=2.82
Proteins (S.Cerevisiae):  N=1,870 mean degree=2.39 

(Source: Leskovec et al., Internet Mathematics, 2009)

Adjacency matrix is filled with zeros!

(Density of the matrix : WWW=1.51*10-5, MSN IM= 2.27*10-8)

Implications?  Use sparse representations, density not so informative

Real-world networks are sparse

From Leskovec’s slides

http://snap.stanford.edu/class/cs224w-2017/handouts.html
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● Marginals of A ⇒ Degrees 
○ di = Σj Aij

● Degree Distribution
○ shows how many nodes of degree d are in the graph
○ degree sequence of all nodes ⇒ count frequencies

Marginals of Adjacency Matrix
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Heavy Tailed Degree Distribution 

     Actor-Movies                     Researcher-Publications           Wiki communications                    Internet                  Protein Interactions                              

Degree distribution is often heavy tailed in real world networks 

There are few nodes with very high degree & many with very small degree 

This is often referred to as being scale-free

Degree distribution is almost always plotted in log-log scale

Linear scale

http://konect.uni-koblenz.de/networks/actor-movie
http://konect.uni-koblenz.de/networks/dblp-author
http://konect.uni-koblenz.de/networks/wiki-Talk
http://konect.uni-koblenz.de/networks/topology
http://konect.uni-koblenz.de/networks/maayan-vidal
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Example

In air-traffic networks, we 
have major hubs and many 
smaller airports. In highway 
networks, cities are of 
comparable connections. 

poisson vs powerlaw
degree distribution
highways vs airways
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Nodes: WWW documents 
Links:  URL links

Over 3 billion documents
ROBOT: collects all URL’s found in a 
document and follows them recursively

Expected

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999). Network Science: Scale-Free Property

The first observations
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ln pd =−α ln d + β

pd  = C d−α

What is C?

Power law distribution

lo
g

log

Provides a good fit to the linear 
pattern observed in log-log plots 
for degree distribution
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ln pd =−α ln d + c

pd  = C d−α

What is C?

C = eβ

Power law distribution

lo
g

log
https://en.wikipedia.org/wiki/Power_law

Provides a good fit to the linear 
pattern observed in log-log plots 
for degree distribution

https://en.wikipedia.org/wiki/Power_law
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Scale free networks

Networks with power-law degree distribution are coined as scale-free 

Since power-law is scale invariance:

f(d) = pd  = C d−α

f(λ d) = C λ−α d−α = λ−α f(d) 

function f is scale invariance iff 

f(λ x) = λa f(x) for some a and all λ

https://en.wikipedia.org/wiki/Scale_invariance#Scale_invariance_of_functions_and_self-similarity
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Fitting a power law
● Use a log-log scale & fit a line

● CDF is preferred which is also powerlaw ⇒ more accurate exponent 

○ p(x=d) = C d−α ⇒ p(x<=d) ~ C d1-α

● Use logarithmic binning
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Fitting a power law
● Linear Fit in log-log space

○ Very good R2 and p-value because of 
log-log scale!

● Log-Likelihood

○ How likely is function f to fit the data? 
Allows p-value estimation between 
two alternatives, there is a tool for this: 

● Still an active research area

Power Law
Lognormal

From Cosia’s slides

http://tuvalu.santafe.edu/~aaronc/powerlaws/

http://www.michelecoscia.com/?page_id=1441
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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● well-defined mean only if α>2 
● No finite variance if α<3

○ the degree of a randomly chosen node can be 
significantly different from the mean degree

● Most real world networks are within this range 
○ In the examples datasets of Barbasi book, we can see how 

variance deviates from expected variance of same mean 
random network with poisson distribution (dashed green line)

Mean & variance for a power-law
pd  = C d−α

va
ria

nc
e

mean



Comp 596: Network Science, Fall 2020 22

● Quick Notes
○ Assignment 1, slack

● Adjacency matrix and degree
● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● Connectivity & eigenvalues of Laplacian matrix
● How to pattern?

Outline



Comp 596: Network Science, Fall 2020 23

● Income follow a Pareto distribution
○ few individuals earned most of the money & majority earned small amounts 
○ in the US 1% of the population earns a disproportionate 15% of the total US income

○ 80/20 rule (Pareto principle): a general rule of thumb  

e.g. 20 percent of the code has 80 percent of the errors

● Zipf's law
○ distribution of words ranked by their frequency in a random text corpus is 

approximated by a power-law distribution
○ the second item occurs approximately 1/2 as often as the first, and the third 

item 1/3 as often as the first, and so on

Powerlaws are normal?

George 
Kingsley Zipf 
(1902 – 1950)

Vilfredo Federico 
Damaso Pareto 
(1848 – 1923)

https://en.wikipedia.org/wiki/Pareto_principle
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 Preferential Attachment
a.k.a rich get richer, accumulative advantage, Yule process, Matthew effect

Albert Barabasi Model (AB)
● Add one node at the time, add m connections per new node
● the probability of forming a connection to an existing node is proportional to its degree

p(i) ~ di

What creates a powerlaw?

m=?
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● Marginals of A ⇒ Degrees 
○ di = Σj Aij

Marginals of Adjacency Matrix
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Strong correlation between degree of connecting nodes

● For all edges, look at degrees of endpoints
○ Either nodes tend to connect to similar degree nodes or dissimilar

Degree Assortativity

random real real 
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● Marginals of A ⇒ Degrees 
○ di = Σj Aij

● Sum(A) = ΣiΣjAij= Σidi = 2E

● If directed column-wise & row-wise marginals ⇒ indegree and outdegree
○ din

i = Σj Aji and dout
i = Σj Aij 

○ sum(A) = E

Marginals of Adjacency Matrix
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● A2 : # of walks with length two
○ A2

ij = ΣkAikAkj

○ If undirected:

■ A2
ij : number of common neighbors

■ What is A2
ii  ? number of neighbors = degree

○ What is A2
ii in directed graph? number of reciprocal neighbors   

Powers of A

i

j
k

Aik

Ajk

i

j
Aij

Aji i

j
Aij

network’s reciprocity

ΣiΣjAijAji / ΣiΣjAij
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● A2 : # of walks with length two

Powers of A

● A3 : # of walks of length three

○ Is it same as number of paths?
i

l

k
Aik

Alj

Akl

j
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● A2 : # of walks with length two

Powers of A

● A3 : # of walks of length three

○ Is it same as number of paths?

■ A walk is a finite or infinite sequence of edges which 
joins a sequence of vertices

■ A trail is a walk in which all edges are distinct.

■ A path is a trail in which all vertices are distinct.

i

l

k
Aik

Alj

Akl

j

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path
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● A2 : # of walks with length two

Powers of A

i

j

k
Aik

Aij

Aki

● A3 : # of walks of length three

○ Is it same as number of paths? No!

i

l

k
Aik

Alj

Akl

j
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● A2 : # of walks with length two

Powers of A

i

j

k
Aik

Aij

Aki

● A3 : # of walks of length three

○ Is it same as number of paths? No!

○ What is A3
ii  ?

i

l

k
Aik

Alj

Akl

j
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● A2 : # of walks with length two

Powers of A

i

j

k
Aik

Aij

Aki

● A3 : # of walks of length three

○ Is it same as number of paths? No!

○ What is A3
ii  ?

i

l

k
Aik

Alj

Akl

j

Number of Triangles? 
i

 j

k
Aik

Aji

Akj
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Example

import networkx as nx

G = nx.random_geometric_graph(5, 0.5)

A = nx.adjacency_matrix(G).todense()

print A

A2 = A*A

print A2

A3 = A2*A

print A3 

[[0 1 1 1 0]
 [1 0 1 0 1]
 [1 1 0 1 1]
 [1 0 1 0 0]
 [0 1 1 0 0]]

[[3 1 2 1 2]
 [1 3 2 2 1]
 [2 2 4 1 1]
 [1 2 1 2 1]
 [2 1 1 1 2]]

[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]

4

5

3

2

1
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Clustering Coefficient 
ci = A3

ii
 / di (di-1)
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Clustering Coefficient 
ci = A3

ii
 / di (di-1)

 [[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]
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ci = A3
ii
 / di (di-1)

Tr(A3)/6  

Real networks have a lot of triangles
Friends of friends are friends 

Can we compute number of triangles more effectively?

Clustering Coefficient 
[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]
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[[4 7 7 5 3]
 [7 4 7 3 5]
 [7 7 6 6 6]
 [5 3 6 2 3]
 [3 5 6 3 2]]

Clustering Coefficient 
ci = A3

ii
 / di (di-1)

Tr(A3)/6  

Real networks have a lot of triangles
Friends of friends are friends 

Can we compute number of triangles more effectively?
from eigenvalues of A as ⅙ ∑iλi

3 
Since if λ is eigenvalue of A then λp is an eigenvalue of Ap

We can approximate with using only top eigenvalues since this distribution is skewed 
Many works on approximating number of triangles in large graphs 
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Clustering Coefficient 
ci = A3

ii
 / di (di-1)

Tr(A3)/6

Tr(A3)/(Sum(A2)-Tr(A2))

note the 
difference:
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● High global clustering coefficient or high average local clustering coefficient

● Distribution of local clustering coefficient  

Transitivity & Assortativity

random real real 
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From Clauset’s 
slides

A

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
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https://en.wikipedia.org/wiki/Breadth-first_search

Longest & average shortest path

Shortest Path 

https://en.wikipedia.org/wiki/Breadth-first_search
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Shortest path distribution is normal with small [shrinking] average in real world 
You can reach any node in a graph passing through few hubs 
This is often referred to as small world

Diameter is also small {longest sp}

Small average shortest path

Stanley Milgram
 (1933-1984)

Letter-passing experiment, 
In 1967 discovered the 
Six Degrees of Separation Four Degrees of Separation

You are 4 hops away from 
anyone in the planet
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Connected (undirected) graph: any two vertices can be joined by a path

A disconnected graph is made up by two or more connected components   

D
C

A

B

F

F

G

From Barbasi’s slides

Connectivity

Connected Not Connected

D
C

A

B

F

F

G

http://networksciencebook.com/
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Connected (undirected) graph: any two vertices can be joined by a path

A disconnected graph is made up by two or more connected components   

Largest Component is referred to as the giant connected component (GCC)

Bridge edges are those that if erased, the graph becomes disconnected 

From Barbasi’s slides

Connectivity: GCC & bridges

D
C

A

B

F

F

G

Connected Not Connected

D
C

A

B

F

F

G

http://networksciencebook.com/
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● Strongly connected component
○ has a path from each node to every other node and vice versa 

■ e.g. A to B path and B to A path

● Weakly connected component 
○ it is connected if we disregard the edge directions

Connectivity in directed graphs

From Barbasi’s slides & 
From newman’s book

How many scc do we have in this example graph?

How many wcc do we have in this example graph?

http://networksciencebook.com/
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● Strongly connected component
○ has a path from each node to every other node and vice versa 

■ e.g. A to B path and B to A path

● Weakly connected component 
○ it is connected if we disregard the edge directions

Connectivity in directed graphs

From Barbasi’s slides & 
From newman’s book

How many scc do we have in this example graph? 5

How many wcc do we have in this example graph? 2

http://networksciencebook.com/
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In/Out components

From newman’s book

 out-component of node A  out-component of node B

In-component: nodes that can reach the scc 

Out-component: nodes that can be reached 
from the scc

in/out-component of a 
specific node: set of nodes 
reachable by directed 
paths to/from that node
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How to check connectivity?
Start from one node, traverse the graph and record the nodes you reach. If 
the size of this reached set of nodes is equal to all the nodes in the graph, 
then the graph is connected. If not, this is one component and continue until 
all nodes have been reached to get all the components.
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Connectivity & Adjacency Matrix

From Barbasi’s slides

The adjacency matrix of a network with several components can be written in a 
block-diagonal form, so that nonzero elements are confined to squares, with all other 
elements being zero:

How can we use this to see if the graph is connected based on A?

http://networksciencebook.com/
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Connectivity & Laplacian Matrix

we need to consider a super useful matrix 
comes into play in many many different contexts

D: diagonal matrix of degrees

Laplacian Matrix: L = D - A

[[3 0 0 0 0]
 [0 3 0 0 0]
 [0 0 4 0 0]
 [0 0 0 2 0]
 [0 0 0 0 2]]

D

[[0 1 1 1 0]
 [1 0 1 0 1]
 [1 1 0 1 1]
 [1 0 1 0 0]
 [0 1 1 0 0]]

A

[[ 3 -1 -1 -1  0]
 [-1  3 -1  0 -1]
 [-1 -1  4 -1 -1]
 [-1  0 -1  2  0]
 [0  -1 -1  0  2]]

L
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Eigenvalues of Laplacian Matrix
● Lu = λu

● We have n eigenvalues which we call Laplacian Spectrum:
 0 = λ0 ≤ λ1 ≤ λ2 ≤ … ≤ λn

● λ0 is always zero since we have L(1,1...1) = 0 
why this holds?

● E = ½ Σdi = ½ Tr(L) = ½ Σλi 

● Laplacian Spectrum relates to graph connectivity & clustering

for undirected graphs, we can always do 
eigenvalue decomposition since L is symmetric

wiki: Eigenvalues

L= D - A
[[ 3 -1 -1 -1  0]
 [-1  3 -1  0 -1]
 [-1 -1  4 -1 -1]
 [-1  0 -1  2  0]
 [0  -1 -1  0  2]]

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Connectivity & Laplacian Matrix

● smallest eigenvalue of L is always zero

● second-smallest eigenvalue of L is called Algebraic 
connectivity or Fiedler value and is nonzero only if  
graph is connected

● number of zero eigenvalues of L gives the number of 
connected components



Comp 596: Network Science, Fall 2020 58

Clustering & Laplacian Matrix 

● Signs of values in Fiedler eigenvector (associated to Fiedler 
eigenvalue) tell us how to partition the graph into two 
components by breaking least edges, i.e. minimum cut solution

more on this and spectral clustering later 

● eigengap is the difference between subsequent eigenvalues

○ first large eigengap is related to the number of clusters in data

○ first eigengap (=smallest nonzero eigenvalue) is called spectral gap 
which relates to how quickly the diffusion takes place on the network 
and density of the graph 

See this: https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b


Comp 596: Network Science, Fall 2020 59

● Quick Notes
○ Assignment 1, slack

● Adjacency matrix and degree
● Sparsity Pattern
● Scale Free Pattern

○ Power-law degree distribution 
○ Fitting a power-law
○ Preferential attachment and AB model

● Assortativity Pattern 
● Transitivity Pattern 

○ powers of A & counting triangles
● Small world Pattern 

○ Shortest path 
● Connectivity & eigenvalues of Laplacian matrix
● How to pattern?

Outline



Comp 596: Network Science, Fall 2020 60

Pattern Detection

● WHY?
○ Understand the language of complex systems
○ Characterize different types of networks
○ Design {efficient} data structure & algorithms
○ Tangled with Measurements, Anomaly detection, Modelling

● HOW?
○ What do networks have in common? 
○ How to measure or characterize (nodes, communities, whole) networks?
○ What are universal patterns observed in real world networks?
○ What is structure of real-world networks?
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{common} Network Repositories

From Clauset’s slides

1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/
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{common} Network Repositories
1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/
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{common} Network Repositories
1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection

Let slack know if you come 
across other large repos

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/
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{common} Network Repositories
1. Newman’s collection
2. Stanford Large Network 

Dataset Collection
3. The Colorado Index of 

Complex Networks (ICON)
4. The Koblenz Network 

Collection

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://icon.colorado.edu/#!/
https://icon.colorado.edu/#!/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/


Comp 596: Network Science, Fall 2020 65

From Clauset’s slides

Hypothesize, analyze & observe

http://konect.uni-koblenz.de/plots/degree_distribution

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://konect.uni-koblenz.de/plots/degree_distribution
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From Clauset’s slides

Hypothesize, analyze & observe

http://konect.uni-koblenz.de/plots/degree_distribution

All the degrees in the Koblenz Network Collection

http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L0.pdf
http://konect.uni-koblenz.de/plots/degree_distribution
http://konect.uni-koblenz.de/

