

# Background

### Analysis of complex interconnected data







## Outline

#### • Quick Recap of important points

- General info & Grading
- Who is in the class
- Learning the vocabulary of Network Science
  - Evolution of the field and scale of the data
  - Types of Networks: simple, directed, temporal, bipartite, etc
  - Adjacency matrix, powers of A, Laplacian matrix
  - Shortest path, connectivity, connected components, GCC



# Grading details

- 40% project (10% proposal, 10% progress report, 20% final report)
- 30% assignments (3x10%)
- 25% presentations of assigned papers
- 5% reviewing assignments note: most of the grading is by peer-assessment
- bonus points:
  - 5 point for the best class presentation
  - 5 points for the best project proposal
  - o 5 point for the best reviewer
  - 10 points for the best project
  - 1 point for each interesting point you share at the end of a class from the readings (for the current or previous lectures) which was not covered in the class

#### Schedule

Wed., Sep. 2 <del>Mon., Sep. 7</del> Wed., Sep. 9 Topic: Background, slides Reading: NI chapter 6, NS chapter 2 Mon., Sep. 14 Wed., Sep. 16 Mon., Sep. 21

### **Reference Materials**

#### Main textbooks

- [NI] Networks: An Introduction by M.E.J. Newman, ebook at library
- [NS] Network Science by Albert-Barabasi, available online

#### • Other textbooks

- Networks, Crowds and Markets by D. Easley and J. Kleinberg, available online
- Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman, <u>available online</u>

#### Surveys and conference papers

 Web (WebConference, WSDM, ICWSM), Data (KDD, ICDM, SDM, ECML/PKDD, PAKDD), Learning (ICML, NeurIPS), Networks (ASONAM, NetSci, Complex Networks), ...



Networks



Jure Leskove Anad Rajazmar Jeffrey David Ullmar Mining of Massive Datasets

### Announcement: first assignment out

http://www.reirab.com/Teaching/NS20/Assignment\_1.pdf

Check the description, and partner up

#### Deadlines

- assignment 1 due on Sep. 20th
- assignment 2 due on Oct. 4th
- assignment 3 due on Oct. 18th
- project proposal slides due on Oct. 25th
- project proposal due on Nov. 1th
- Reviews (first round) due on Nov. 8th
- project progress report due on Nov. 22nd
- Reviews (second round) due on Nov. 29th
- project final report slides due on Dec. 1st
- project final report due on Dec. 6th
- · Reviews (third round) due on Dec. 13th
- project revised report and rebuttal due on Dec. 20th
- note: dates are tentative, please check them for the updated deadlines

5

° (\* \*

### Projects - updated plan

Proposals are individually

After proposal presentations, you can decide to join another project and continue as a group of two or complete the project individually



# Class composition

Quick round of introductions

- Name
- Your background
- Any particular reason for taking this class





## Outline

- Quick Recap of important points
  - General info & Grading
  - Who is in the class

#### • Learning the vocabulary of Network Science

- Evolution of the field and scale of the data
- Types of Networks: simple, directed, temporal, bipartite, etc
- Adjacency matrix, powers of A, Laplacian matrix
- Shortest path, connectivity, connected components, GCC



### Timeline of notable works in network science



#### Graph theory is older than network science

Based on Slides from Jie Tana

## Graph Theory & Network Science

Network science borrows many concepts/theories from graph theory. The focus, however, is on **real world** graphs which have specific characteristics, and are different than random graph families commonly studied in math. for example, regular graphs (same degree for all nodes), are irrelevant here.

Can one walk across the seven bridges and never cross the same bridge twice?





#### 1735: Euler's theorem:

If a graph has more than two nodes of odd degree, there is no path. If a graph is connected and has no odd degree nodes, it has at least one path.

# Real world graphs are Large Scale

#### facebook

- 2 billion MAU
- 26.4 billion minutes/day
- twitter
  - 320 million MAU
  - Peak: 143K tweets/s

🗿 Instagram

- 700 million MAU
- 95 million pics/day



- 300 million MAU
- 30 minutes/user/day

Linkedin Courselucie Volu Ube Volu Ube Courselucie C

- CCAlibaba Group 阿里巴巴集团
- >777 million trans. (alipay)
- 200 billion on 11/11



•QQ: 860 million MAU • WeChat: 1.1 billion MAU

Based on Slides from <u>Jie Tang</u>



#### Example benchmark datasets

NETWORK

Internet WWW Power Grid Mobile Phone Calls

Email

Science Collaboration Actor Network

**Citation Network** 

E. Coli Metabolism

**Protein Interactions** 

NODES

Routers Webpages Power plants, transformers Subscribers Email addresses Scientists Actors Paper Metabolites Proteins

LINKS Internet connections Links Cables Calls Emails Co-authorship Co-acting Citations Chemical reactions **Binding interactions** 

|   | DIRECTED<br>UNDIRECTED | N       |            |
|---|------------------------|---------|------------|
|   | Undirected             | 192,244 | 609,066    |
|   | Directed               | 325,729 | 1,497,134  |
|   | Undirected             | 4,941   | 6,594      |
|   | Directed               | 36,595  | 91,826     |
|   | Directed               | 57,194  | 103,731    |
|   | Undirected             | 23,133  | 93,439     |
|   | Undirected             | 702,388 | 29,397,908 |
|   | Directed               | 449,673 | 4,689,479  |
|   | Directed               | 1,039   | 5,802      |
|   | Undirected             | 2,018   | 2,930      |
| 1 |                        | 1       | <u>.</u>   |

You can download these bundled from Barbasi's website, for the assignment



الکیکی ا

# Outline

- Quick Recap of important points
  - General info & Grading
  - Who is in the class

#### • Learning the vocabulary of Network Science

- Evolution of the field and scale of the data
- Types of Networks: simple, directed, temporal, bipartite, etc
- Adjacency matrix, powers of A, Laplacian matrix
- Shortest path, connectivity, connected components, GCC



### Interconnected Data as Graphs

- Nodes (or Vertices)
  - Proteins, Neurons, People
- Edges (or Links)
  - interactions, friendships



- Two adjacent vertices are neighbors
- An edge is incident with another edge if they share a vertex
- An edge is incident with two vertices





#### Adjacency: the default data structure

| Adjacency Matrix                                      | Adjacency List                                                                                                                                       | Edge List                                                                                                                                                                                                                                                                       | Simple Graph |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0: {1,2,11}<br>1: {0,2,3}<br>2: {0,1}<br>3: {1,4,5}<br>4: {3,5,6}<br>5: {3,4}<br>6: {4,7,8}<br>7: {6,8}<br>8: {6,7,10}<br>9: {10,11}<br>10: {8,9,11} | $\{ (0, 1), (0, 2), (0, 11), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (3, 1), (3, 4), (3, 5), (4, 3), (4, 5), (4, 6), (5, 3), (5, 4), (6, 4), (6, 7), (6, 8), (7, 8), (7, 6), (8, 6), (8, 7), (8, 10) (9, 10), (9, 11), (10, 8), (10, 9), (10, 11), (11, 9) (11, 9) (11, 10) \}$ |              |  |  |  |

$$G(V, E), V = \{1 \dots n\}, E = \{(i, j) | i, j \in [1 \dots n]\} \land A_{ij} = 1\}$$

Real world graphs are sparse (lots of zeros) and we use sparse matrix representations which in practice are similar to adjacency (<u>LIL format</u>)/edge list (<u>COO format</u>) and only store non-zero values.

<u>کو</u>

6

(5)

# Not Simple

- Directions
  - E.g. who follows who at Twitter
- Weights
  - E.g. friendship strength, or travel cost
- Time
  - E.g. your friendships changes









### Directed Networks Examples

citation networks foodwebs\* epidemiological



directed acyclic graph



WWW friendship? flows of goods, information economic exchange dominance neuronal transcription time travelers

From Clauset's slides



<u>ک</u>

کی ا

## Adjacency Matrix

- Symmetric if graph is undirected
  A<sub>ij</sub> = A<sub>ji</sub>
- Directected, not symmetric
  - $\circ \quad \mathsf{A}_{ij} \neq \mathsf{A}_{ji}$
- Weighted, not binary
   [0,1] ⇒ R<sup>+</sup>
- Temporal
  - Matrix  $\Rightarrow$  Tensor

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|----|---|---|---|---|---|---|---|---|---|---|----|----|
| 0  | 0 |   | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 1  |
| 1  |   | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  |
| 2  | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  |
| 3  | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0  | 0  |
| 4  | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 0  |
| 5  | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0  | 0  |
| 6  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0  | 0  |
| 7  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0  | 0  |
| 8  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1  | 0  |
| 9  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1  | 1  |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0  | 1  |
| 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1  | 0  |
|    |   |   |   |   |   |   |   |   |   |   |    | _  |

#### Simple and Not Simple



From Clauset's slides

**\$**}

وي ال

#### Example 2 Directed edge Weighted edge 3 Self-loop 5 Multi-edge 6 Weighted node

#### adjacency matrix 3 A 4 5 6 1 2 1 0 0 0 0 $\{1, 1, 2\}$ 0 1 0 $\frac{2}{3}$ $\frac{1}{2}$ $\{2,1\}$ 1 0 4 0 $\begin{array}{ccc} 0 & 2 \\ 2 & 0 \\ 4 & 0 \end{array}$ 4 $\{2,1\}$ 4 0 0 0 1 0 0 0 5 $\{1, 1, 2\}$ 6 4 2 0 0 0 0 adjacency list A 1 $\rightarrow \{(5,1), (5,1), (5,2)\}$ $2 \quad \rightarrow \{(1,1), (2,\frac{1}{2}), (3,2), (3,1), (4,1)\}$ $3 \rightarrow \{(2,2), (2,\tilde{1}), (4,2), (5,4), (6,4)\}$ $4 \rightarrow \{(2,1), (3,2)\}$ 5 $\rightarrow \{(1,1), (1,1), (1,2), (3,4)\}$ $6 \rightarrow \{(3,4), (6,2)\}$

From Clauset's slides

**\$**}

کی ا

#### Temporal Networks, snapshots or continuous



#### any network over time

discrete time (snapshots), edges (i, j, t)continuous time, edges  $(i, j, t_s, \Delta t)$ 

° (\* \*

# Not Simple Graphs

- Multigraph: Multiple edges
  - E.g. followership & friendship
- Heterogeneous Graphs: Different Types
  - E.g. people, places, interest
- Relation between more than two nodes
  Hypergraphs, E.g. family
- Relationships in different layers
  - Multiplex or multilayer network





### Multilayer Networks



Multiplex: same set of nodes

different types of connections

E.g. flights layered by airlines

https://arxiv.org/pdf/170 8.07763.pdf

کی ا

#### Incidence Matrix

- A<sub>ii</sub>= 1 if i is connected to j & 0 otherwise
- **B**<sub>ik</sub>=1 if i is incident to edge k & 0 otherwise
- If simple graph
  - 2 ones in each column

**Bipartite Graphs** 

 $\circ \quad \mathbf{B}\mathbf{B}^{\mathsf{T}} = \mathbf{A} + \mathbf{D}$ 





 $\forall = A \cup B \text{ where } A \cap B = \emptyset, \text{ and } \forall (i,j) \in E((i \in A) \land (j \in B)) \lor ((i \in B) \land (j \in A))$ 

#### **Bipartite Networks**



No within edges & Two possible One mode projections

authors & papers actors & movies/scenes musicians & albums people & online groups people & corporate boards people & locations (checkins) metabolites & reactions genes & substrings words & documents plants & pollinators

From Clauset's slides



° (\* \*

#### Bipartite Networks example



Gene network





From Barbasi's slides

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

اللي ال

#### Bipartite Networks example



#### Ingredient-Flavor Network

From Barbasi's slides

Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási Flavor network and the principles of food pairing, Scientific Reports 196, (2011).

° (200

#### Bipartite Networks example



https://arxiv.org/pdf/1111.3919.pdf

https://studentwork.prattsi.org/infovis/labs/visualizing-ingredient-networks/ browse for visualizarions and project ideas