Applied Machine Learning

Regularization

Reihaneh Rabbany

COMP 551 (winter 2023)

Learning objectives

- intuition for model complexity and overfitting
- regularization penalty (L1 & L2)
- probabilistic interpretation

Linear regression

$$\begin{array}{ll} \text{model:} & \hat{y} = f_w(x) = w^\top x \ : \mathbb{R}^D \to \mathbb{R} \\ & \begin{array}{l} \text{cost} \\ \text{function:} \end{array} & J_w = \frac{1}{N} \sum_n \frac{1}{2} (y^{(n)} - \hat{y}^{(n)})^2 = \frac{1}{2} ||y - Xw||^2 \\ & \begin{array}{l} \text{how to find } w^*? & \begin{array}{l} \text{closed form solution:} \end{array} & w^* = (X^\top X)^{-1} X^\top y \\ & \begin{array}{l} \text{ow to find } w^*? & \begin{array}{l} \text{closed form solution:} \end{array} & w^* = (X^\top X)^{-1} X^\top y \\ & \begin{array}{l} \text{or use} \\ \text{gradient (all partial derivatives:} \\ \text{descent} \end{array} & \frac{\partial}{\partial w_d} J_w = \frac{1}{N} \sum_n (\hat{y}^{(n)} - y^{(n)}) x_d^{(n)} \\ & \nabla J(w) = \frac{1}{N} \sum_n (\hat{y}^{(n)} - y^{(n)}) x^{(n)} = \frac{1}{N} X^\top (\hat{y} - y^{(n)}) \\ & \begin{array}{l} \text{repeat until stopping criterion:} \\ & w^{\{t+1\}} \leftarrow w^{\{t\}} - \alpha \nabla J(w^{\{t\}}) \end{array} \end{array}$$

what if **linear fit is not the best**?

how to increase the model's expressiveness?

 \Rightarrow use nonlinear basis to create new nonlinear features from the existing ones

Nonlinear basis functions

replace original features in $\ f_w(x) = \sum_d w_d x_d$ with nonlinear bases $f_w(x) = \sum_d w_d \phi_d(x)$ linear least squares solution $\ (\Phi^ op \Phi) w^* = \Phi^ op y$ replacing X with Φ a (nonlinear) feature $\Phi = egin{bmatrix} \phi_1(x^{(1)}), & \phi_2(x^{(1)}), & \cdots, & \phi_D(x^{(1)}) \ \phi_1(x^{(2)}), & \phi_2(x^{(2)}), & \cdots, & \phi_D(x^{(2)}) \ dots & dots & dots & dots \ dots \$ one instance

Nonlinear basis functions

5

prediction for a new instance

our fit to data using 10 Gaussian bases

 $\left| \phi_k(x) = e^{-rac{(x-\mu_k)^2}{s^2}}
ight|$

which one of these models performs better at test time?

Overfitting

which one of these models performs better at test time?

An observation

when overfitting, we sometimes see large weights

idea: penalize large parameter values

Ridge regression

also known as

L2 regularized linear least squares regression:

$$egin{aligned} J(w) &= rac{1}{2}||Xw-y||_2^2 + rac{\lambda}{2}||w||_2^2 \ &ert &ert &ert \ &ert &ert \ &er$$

regularization parameter $\lambda > 0$ controls the strength of regularization

a good practice is to **not** penalize the intercept $\lambda(||w||_2^2 - w_0^2)$

 λ is a hyper-parameter (use a validation set or cross-validation to pick the best value)

Ridge regression example

Visualizing the effect of regularization on the cost function

is the new cost function convex?

$$rac{1}{2N}\sum_{x,y\in\mathcal{D}}(y-w^{ op}x)^2+rac{\lambda}{2}||w||_2^2$$

Ridge regression

set the derivative to zero $J(w) = \frac{1}{2} \sum_{x,y \in D} (y - w^{\top}x)^2 + \frac{\lambda}{2} w^{\top}w$ $\nabla J(w) = \sum_{x,y \in D} x(w^{\top}x - y) + \lambda w$ $= X^{\top}(Xw - y) + \lambda w = 0$

linear system of equations $(X^ op X + \lambda \mathbf{I})w = X^ op y$

when using gradient descent, this term reduces the weights at each step **(weight decay)**

 $w = (X^ op X + \lambda \mathbf{I})^{-1} X^ op y$

the only part different due to regularization

 λI makes it invertible, adds a small value to the diagonals $X^ op X$ we can have linearly dependent features the solution will be unique!

Example: polynomial bases

Without regularization:

• using D=10 we can perfectly fit the data (high test error)

Example: polynomial bases

polynomial bases $\phi_k(x)=x^k$

with regularization:

• fixed D=10, changing the amount of regularization

Probabilistic interpretation

recall linear regression & logistic regression maximize log-likelihood

 $w^{MLE} = rgmax_w \, p(y|X,w)$

linear regression
$$w^{MLE} = rg\max_w \prod_{x,y\in\mathcal{D}} \mathcal{N}ig(y|w^ op x,\sigma^2ig)$$

logistic regression $w^{MLE} = rg\max_w \prod_{x,y\in\mathcal{D}} \operatorname{Bernoulli}(y;\sigma(w^ op x))$

can we do Bayesian inference instead of maximum likelihood?

$$p(w|y,X) \propto p(w)p(y|w,X)$$
 posterior prior likelihood

Maximum a Posteriori (MAP)

can we do Bayesian inference instead of maximum likelihood?

$p(w|y,X) \propto p(w)p(y|w,X)$

in general, this is expensive, but there's a cheap compromise:

MAP estimate
$$w^{MAP} = rg\max_w p(w)p(y|X,w)$$

$$= rg \max_{w} \log p(y|X, w) + \frac{\log p(w)}{\log p(w)}$$

likelihood: original objective prior

all that is changing is the additional penalty on w

Gaussian Prior

MAP estimate
$$w^{MAP} = rg\max_w \log p(y|X,w) + \frac{\log p(w)}{\operatorname{prior}}$$

assume independent zero-mean Gaussians

$$\log p(w) = \log \prod_{d=1}^D \mathcal{N}(w_d|0, au^2) = -\sum_d rac{w^2}{2 au^2} + ext{const.}$$

does not depend on w so it doesn't affect the optimization

lets call $\; rac{1}{ au^2} o \lambda$ then we get the L2 regularization penalty $rac{\lambda}{2}||w||_2^2$

smaller variance of the prior au gives larger regularization λ

 $\mathcal{N}(\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})}$

Laplace prior

another notable choice of prior is the Laplace distribution

minimizing negative log-likelihood $\longrightarrow \sum_{d} \log p(w_d) = -\sum_{d} \frac{1}{\beta} |w_d| = -\frac{1}{\beta} ||w||_1$

L1 regularization: $J(w) \leftarrow J(w) + \lambda ||w||_1$ also called lasso

(least absolute shrinkage and selection operator)

L1 norm of w

$L_1 \text{ vs } L_2$ regularization

regularization path shows how $\{w_d\}$ change as we change λ Lasso produces sparse weights (many are zero, rather than small)

 $[\]Rightarrow$ lasso results in sparse models

$L_1 \text{ vs } L_2$ regularization

 $\min_w J(w) + \lambda ||w||_p^p$

is equivalent to $\min_w J(w)$ subject to $||w||_p^p \leq \tilde{\lambda}$ for an appropriate choice of $\tilde{\lambda}$ figures below show the constraint and the isocontours of J(w)

optimal solution with L1-regularization is more likely to have zero components

Subset selection

p-norms with $p \geq 1$ are convex (easier to optimize)

penalizes the **number of** features with non-zero weights

$$J(w) + \lambda ||w||_0 = J(w) + {\color{black}{\lambda}} \sum_d \mathbb{I}(w_d
eq 0)$$

enforces a penalty of λ for each feature to be included in the model \Rightarrow performs feature selection

Subset selection

p-norms with $p \geq 1$ are convex (easier to optimize)

Adding L_2 regularization

do not penalize the bias w_0 L2 penalty makes the optimization easier too! note that the optimal w_1 shrinks example for **logistic regression**

$\bullet \bullet \bullet$

1 def gradient(x, y, w, lambdaa): 2 N,D = x.shape 3 yh = logistic(np.dot(x, w)) 4 grad = np.dot(x.T, yh - y) / N 5 grad[1:] += lambdaa * w[1:] 6 return grad

weight decay

Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0) extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

$$\partial f(\hat{w}) = \; \left[\lim_{w o \hat{w}^-} rac{f(w) - f(\hat{w})}{w - \hat{w}}, \lim_{w o \hat{w}^+} rac{f(w) - f(\hat{w})}{w - \hat{w}}
ight]$$

if $m{f}$ is differentiable at $\hat{m{w}}$ then sub-differential has one member $rac{d}{dw}f(\hat{w})$

another expression for sub-differential $\partial f(\hat{w}) = \{g \in \mathbb{R} | \; f(w) > f(\hat{w}) + g(w - \hat{w}) \}$

Subgradient

$$f(w) = |w|$$

$$egin{aligned} \partial f(0) &= \lfloor -1,1
brace \ \partial f(w
eq 0) &= \{ ext{sign}(w)\} \end{aligned}$$

recall, gradient was the vector of partial derivatives subgradient is a vector of sub-derivatives

subdifferential for functions of multiple variables

$$\partial f(\hat{w}) = \{g \in \mathbb{R}^D | f(w) > f(\hat{w}) + g^ op (w - \hat{w}) \}$$

we can use sub-gradient with diminishing step-size for optimization

Adding L_1 regularization

L1-regularized *linear regression* has efficient solvers subgradient method for L1-regularized logistic regression do not penalize the bias w_0 using diminishing learning rate

1 def	<pre>gradient(x, y, w, lambdaa):</pre>
2	N,D = x.shape
3	<pre>yh = logistic(np.dot(x, w))</pre>
4	grad = np.dot(x.T, yh - y) / N
5	<pre>grad[1:] += lambdaa * np.sign(w[1:])</pre>
6	return grad

Regularization serves many purposes

 $w^* = (X^ op X)^{-1} X^ op y \ D imes 1 \quad D imes N \quad N imes D \quad N imes 1$

what if $X^{\top}X$ is **not invertible**?

add a small value to the diagonals, a.k.a. regularize

what if **linear fit is not the best**?

use nonlinear basis

How to avoid **overfitting** then? regularize

what if **we want a sparse model**?

do feature selection and only keep important parameters with regularizing

Data normalization

what if we scale the input features, using different factors $\tilde{x_d}^{(n)} = \gamma_d x_d^{(n)} \forall d, n$ if we have no regularization: $\tilde{w_d} = \frac{1}{\gamma_d} w_d \forall d$ everything remains the same because: $||Xw - y||_2^2 = ||\tilde{X}\tilde{w} - y||_2^2$ with regularization: $||\tilde{w}||_2 \neq ||w||_2^2$ so the optimal **w** will be different! features of different mean and variance will be penalized differently

normalization

$$egin{aligned} \mu_d &= rac{1}{N} x_d^{(n)} \ \sigma_d^2 &= rac{1}{N-1} (x_d^{(n)} - \mu_d)^2 \end{aligned}$$

makes sure all features have the same mean and variance $x_d^{(n)} \leftarrow rac{x_d^{(n)} - \mu_d}{\sigma_d}$ we saw that this also helps with the optimization!

Summary

- complex models can overfit to training data
- regularization avoids this by penalizing model complexity
 - L1 & L2 regularization
 - probabilistic interpretation: different priors on weights
 - L1 produces sparse solutions (useful for feature selection)