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intuition for model complexity and overfitting
regularization penalty (L1 & L2)
probabilistic interpretation

Learning objectives
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Linear regression
recall

what if linear fit is not the best?
how to increase the model's expressiveness?

 use nonlinear basis to create new nonlinear features from the existing ones⇒

=ŷ f (x) =w w x :⊤ R →D Rmodel:

J =w (y −
N
1 ∑n 2

1 (n) ) =ŷ(n) 2 ∣∣y −2
1 Xw∣∣2cost

function:

w =∗ (X X) X y⊤ −1 ⊤closed form solution:how to find ?w∗

J =∂wd

∂
w ( −

N
1 ∑n ŷ(n) y )x(n)

d

(n)
partial derivatives:

∇J(w) = ( −
N
1 ∑n ŷ(n) y )x =(n) (n) X ( − y)

N
1 ⊤ ŷgradient (all partial derivatives):

partial derivatives:

w ←{t+1} w −{t} α∇J(w ){t}
 repeat until stopping criterion:

optimization with gradient descent:

Or use
gradient
descent
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Nonlinear basis functions

replace original features in f (x) =w w x∑d d d

with nonlinear bases f (x) =w w ϕ (x)∑d d d

(Φ Φ)w =⊤ ∗ Φ y⊤linear least squares solution

Φ =

⎣⎢
⎢⎢⎢
⎡ ϕ (x ),1

(1)

ϕ (x ),1
(2)

⋮
ϕ (x ),1

(N)

ϕ (x ),2
(1)

ϕ (x ),2
(2)

⋮
ϕ (x ),2

(N)

⋯ ,
⋯ ,

⋱
⋯ ,

ϕ (x )D
(1)

ϕ (x )D
(2)

⋮
ϕ (x )D

(N) ⎦⎥
⎥⎥⎥
⎤

replacing X with Φ
a (nonlinear) feature

one instance

recall
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examples x ∈ R

polynomial bases

ϕ (x) =k xk

Gaussian bases

ϕ (x) =k e− s2
(x−μ )k

2
Sigmoid bases

ϕ (x) =k
1+e− s

x−μk
1

original input is scalar

Nonlinear basis functions

recall
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Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2

y =(n) sin(x ) +(n) cos( ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases

f(x ) =′ ϕ(x ) (Φ Φ) Φ y′ ⊤ ⊤ −1 ⊤

new instance
w

features evaluated for the new point

prediction for a new instance

found using LLS
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our fit to data using 10 Gaussian bases

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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using 50 bases!

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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cost              is zero and we have a "perfect" fit!J(w)
using 200, thinner bases (s=.1)

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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Generalization?

which one of these models performs better at test time?

D = 5

D = 10

D = 50

D = 200

lower training error
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Overfitting

which one of these models performs better at test time?

predictions of 4 models for the same input

x′

D = 5

D = 10

D = 50

D = 200
y

lowest test error

overfitting

underfitting
f(x )′
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An observation
when overfitting, we sometimes see large weights

dashed lines are w ϕ (x) ∀dd d

idea: penalize large parameter values

D = 10 D = 20D = 17

f (x) =w w ϕ (x)∑d d d
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Ridge regression

L2 regularized linear least squares regression:

J(w) = ∣∣Xw −2
1 y∣∣ +2

2 ∣∣w∣∣2
λ

2
2

(y −2
1 ∑n

(n) w x)⊤ 2
sum of squared error squared L2 norm of w

w w =T w∑d d
2

regularization parameter              controls the strength of regularizationλ > 0

a good practice is to not penalize the intercept λ(∣∣w∣∣ −2
2 w )0

2

also known as

is a hyper-parameter (use a validation set or cross-validation to pick the best value)λ
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Ridge regression
Visualizing the effect of regularization on the cost function

(y −2N
1 ∑x,y∈D w x) +⊤ 2 ∣∣w∣∣2

λ
2
2

example

w0

w1

is the new cost function convex?

w0 w0 14



Ridge regression

set the derivative to zero J(w) = (y −2
1 ∑x,y∈D w x) +⊤ 2 w w2

λ ⊤

∇J(w) = x(w x−∑x,y∈D
⊤ y) + λw

(X X +⊤ λI)w = X y⊤

w = (X X +⊤ λI) X y−1 ⊤

the only part different due to regularization

       makes it invertible, adds a small value to the diagonals 

we can have linearly dependent features
the solution will be unique!

X X⊤λI

when using gradient descent, this term reduces the
weights at each step (weight decay)

= X (Xw −⊤ y) + λw = 0

linear system of equations
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Example: polynomial bases

degree 2 (D=3)

polynomial bases

ϕ (x) =k xk

degree 4 (D=5) degree 9 (D=10)

Without regularization:
using D=10 we can perfectly fit the data (high test error)
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with regularization:

fixed D=10, changing the amount of regularization

λ = 0 λ = .1 λ = 10

Example: polynomial bases
polynomial bases

ϕ (x) =k xk
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Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

w =MLE argmax p(y∣X,w)w

w =MLE argmax N (y∣w x,σ )w ∏x,y∈D
⊤ 2linear regression

w =MLE argmax Bernoulli(y;σ(w x))w ∏x,y∈D
⊤logistic regression

can we do Bayesian inference instead of maximum likelihood?
p(w∣y,X) ∝ p(w)p(y∣w,X)

posterior prior likelihood

recall
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Maximum a Posteriori (MAP)

MAP estimate w =MAP argmax p(w)p(y∣X,w)w

can we do Bayesian inference instead of maximum likelihood?
p(w∣y,X) ∝ p(w)p(y∣w,X)

posterior prior likelihood

in general, this is expensive, but there's a cheap compromise:

= argmax log p(y∣X,w) +w log p(w)
likelihood: original objective prior

all that is changing is the additional penalty on w
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Gaussian Prior

MAP estimate w =MAP argmax log p(y∣X,w) +w log p(w)
prior

assume independent zero-mean Gaussians

log p(w) = log N (w ∣0, τ ) =∏
d=1
D

d
2 − +∑

d 2τ 2
w2 const.

does not depend on w
so it doesn't affect the optimization

lets call →
τ 2
1 λ

then we get the L2 regularization penalty ∣∣w∣∣2
λ

2
2

smaller variance of the prior  gives larger regularization τ λ

20

N (μ,σ) = e
σ 2π
1 − ( )2

1
σ

x−μ 2



Laplace prior
another notable choice of prior is the Laplace distribution

image from here

minimizing negative log-likelihood log p(w ) =∑d d − ∣w ∣∑d β
1

d = − ∣∣w∣∣
β
1

1

L1 norm of w

p(w;β) = e2β
1 −

β

∣w∣

w

notice the peak around zero

J(w) ← J(w) + λ∣∣w∣∣1L1 regularization: also called lasso
(least absolute shrinkage and selection operator)
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https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions


 regularizationL  vs L1 2

regularization path shows how           change as we change{w }d λ

decreasing regularization coef.      λ

wd′

Lasso produces sparse weights (many are zero, rather than small)

red-line is the optimal  from cross-validation, for lasso the model uses only 3 of the 8 features

           lasso results in sparse models

λ

⇒

wd

Ridge regressionLasso

D = 8
Example
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D = 8D = 3

see the code here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb


figures below show the constraint and the isocontours of J(w)
optimal solution with L1-regularization is more likely to have zero components

w1 w1

w2 wMLEwMLE

wMAP
wMAP

w2

∣∣w∣∣ ≤2
2 λ

~∣∣w∣∣ ≤1 λ
~

J(w)J(w) any convex cost function
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 is equivalent to  subject to  for an appropriate choice ofmin J(w)w ∣∣w∣∣ ≤p
p λ

~
min J(w) +w λ∣∣w∣∣p

p

λ
~

optional

 regularizationL  vs L1 2



Subset selection

penalizes the number of features with non-zero weights

J(w) + λ∣∣w∣∣ =0 J(w) + λ I(w =∑d d  0)
enforces a penalty of  for each feature to be included in
the model   performs feature selection

λ

⇒

closer to 0-norm L norm0

p-norms with             induces sparsityp ≤ 1
p-norms with              are convex (easier to optimize)p ≥ 1
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w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2 ∣w ∣(∑d d 10

1 )10

optional



Subset selection

L1 regularization is
a viable alternative
to L0 regularization

p-norms with             induces sparsityp ≤ 1

p-norms with              are convex (easier to optimize)p ≥ 1

closer to 0-norm
optimizing  regularization
is a difficult combinatorial
problem: search over all 
subsets

l0

2D

L norm0

optional

w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2
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Adding       regularization
do not penalize the bias

L2

L2 penalty makes the optimization easier too!
w0

w0

w1

λ = 0

w1w1

λ = .01 λ = .1

note that the optimal         shrinksw1
    grad[1:] += lambdaa * w[1:]

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6 weight decay

26

example for logistic regression

similar pattern for linear regression, see example in the colab



Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

lim , lim[ w→ŵ− w−ŵ
f(w)−f( )ŵ

w→ŵ+ w−ŵ
f(w)−f( )ŵ ]∂f( ) =ŵ

if f is differentiable at          then sub-differential has one memberŵ f( )
dw
d ŵ

∂f( ) =ŵ {g ∈ R∣ f(w) > f( ) +ŵ g(w − )}ŵ

another expression for sub-differential

ŵ

optional
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Subgradient

subgradient is a vector of sub-derivatives

recall, gradient was the vector of partial derivatives

we can use sub-gradient with diminishing step-size for optimization

example subdifferential for f(w) = ∣w∣

∂f(0) = [−1, 1]

∂f(w = 0) = {sign(w)}

∂f( ) =ŵ {g ∈ R ∣f(w) >D f( ) +ŵ g (w −⊤ )}ŵ

subdifferential for functions of multiple variables

image credit: G. Gordon

optional
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Adding       regularizationL1

do not penalize the bias
using diminishing learning rate

w0

note that the optimal         becomes 0w1

    grad[1:] += lambdaa * np.sign(w[1:])

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

λ = .1 λ = 1λ = .1λ = .1

w0

λ = 0

w1 w1 w1 29



Regularization serves many purposes

w =∗ (X X) X y⊤ −1 ⊤

D ×N N × 1D × 1 N ×D

what if linear fit is not the best?
     use nonlinear basis

what if X X⊤ is not invertible?
add a small value to the diagonals, a.k.a. regularize

How to avoid overfitting then? regularize

what if we want a sparse model?
     do feature selection and only keep important parameters with regularizing
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Data normalization

what if we scale the input features, using different factors =xd
~ (n) γ x ∀d,nd d

(n)

with regularization: ∣∣ ∣∣ =w~ 2  ∣∣w∣∣2
2 so the optimal w will be different!

if we have no regularization: =wd
~ w ∀d

γd

1
d

everything remains the same because: ∣∣Xw − y∣∣ =2
2 ∣∣ −X

~
w~ y∣∣2

2

features of different mean and variance will be penalized differently

μ =d x
N
1

d
(n)

σ =d
2 (x −

N−1
1

d
(n)

μ )d 2{normalization

makes sure all features have the same mean and variance x ←d

(n)
σd

x −μ
d

(n)
d

we saw that this also helps with the optimization!

optional
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Summary

complex models can overfit to training data

regularization avoids this by penalizing model complexity

L1 & L2 regularization

probabilistic interpretation: different priors on weights

L1 produces sparse solutions (useful for feature selection)
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