## Applied Machine Learning

Regularization

Reihaneh Rabbany

## Learning objectives

- intuition for model complexity and overfitting
- regularization penalty (L1 \& L2)
- probabilistic interpretation


## Linear regression

model:
cost
function:

$$
\begin{aligned}
& \hat{y}=f_{w}(x)=w^{\top} x: \mathbb{R}^{D} \rightarrow \mathbb{R} \\
& J_{w}=\frac{1}{N} \sum_{n} \frac{1}{2}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}=\frac{1}{2}\|y-X w\|^{2}
\end{aligned}
$$

how to find $w^{*}$ ?

$$
\text { closed form solution: } \quad w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$


what if linear fit is not the best?
how to increase the model's expressiveness?
$\Rightarrow$ use nonlinear basis to create new nonlinear features from the existing ones

## Nonlinear basis functions

replace original features in $f_{w}(x)=\sum_{d} w_{d} x_{d}$
with nonlinear bases $\quad f_{w}(x)=\sum_{d} w_{d} \phi_{d}(x)$
linear least squares solution
$\left(\Phi^{\top} \Phi\right) w^{*}=\Phi^{\top} y$
replacing $\quad X$ with $\Phi$
a (nonlinear) feature

$$
\Phi=\left[\begin{array}{cccc}
\phi_{1}\left(x^{(1)}\right), & \phi_{2}\left(x^{(1)}\right), & \cdots, & \phi_{D}\left(x^{(1)}\right) \\
\phi_{1}\left(x^{(2)}\right), & \phi_{2}\left(x^{(2)}\right), & \cdots, & \phi_{D}\left(x^{(2)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(x^{(N)}\right), & \phi_{2}\left(x^{(N)}\right), & \cdots, & \phi_{D}\left(x^{(N)}\right)
\end{array}\right]
$$

## Nonlinear basis functions

examples original input is scalar $x \in \mathbb{R}$

polynomial bases

$$
\phi_{k}(x)=x^{k}
$$



Gaussian bases

$$
\phi_{k}(x)=e^{-\frac{\left(x-\mu_{k}\right)^{2}}{s^{2}}}
$$



Sigmoid bases
$\phi_{k}(x)=\frac{1}{1+e^{-\frac{x-\mu_{k}}{s}}} \quad 5$

## Example: Gaussian bases

$$
\text { Wxy } \phi_{k}(x)=e^{-\frac{\left(x-\mu_{k}\right)^{2}}{s^{2}}}
$$


prediction for a new instance

$$
f\left(x^{\prime}\right)=\boldsymbol{\phi}\left(x^{\prime}\right)^{\top}\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y
$$


our fit to data using 10 Gaussian bases

## Example: Gaussian bases


our fit to data using 10 Gaussian bases
why not more?

## Example: Gaussian bases




## Example: Gaussian bases



## Generalization?


which one of these models performs better at test time?

## Overfitting

which one of these models performs better at test time?


## An observation

when overfitting, we sometimes see large weights

dashed lines are $w_{d} \phi_{d}(x) \quad \forall d$

$$
f_{w}(x)=\sum_{d} w_{d} \phi_{d}(x)
$$




idea: penalize large parameter values

## Ridge regression

also known as
L2 regularized linear least squares regression:

$$
\begin{array}{cc}
J(w)=\frac{1}{2}\|X w-y\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \\
\text { sum of squared error } & \\
\frac{1}{2} \sum_{n}\left(y^{(n)}-w^{\top} x\right)^{2} & w^{T} w=\sum_{d} w_{d}^{2}
\end{array}
$$

regularization parameter $\lambda>0$ controls the strength of regularization
a good practice is to not penalize the intercept $\lambda\left(\|w\|_{2}^{2}-w_{0}^{2}\right)$
$\lambda$ is a hyper-parameter (use a validation set or cross-validation to pick the best value)

## Ridge regression example

Visualizing the effect of regularization on the cost function
is the new cost function convex? $\quad \frac{1}{2 N} \sum_{x, y \in \mathcal{D}}\left(y-w^{\top} x\right)^{2}+\frac{\lambda}{2}\|w\|_{2}^{2}$


## Ridge regression

set the derivative to zero $J(w)=\frac{1}{2} \sum_{x, y \in \mathcal{D}}\left(y-w^{\top} x\right)^{2}+\frac{\lambda}{2} w^{\top} w$

$$
\begin{aligned}
\nabla J(w) & =\sum_{x, y \in \mathcal{D}} x\left(w^{\top} x-y\right)+\lambda w \\
& =X^{\top}(X w-y)+\lambda w=0
\end{aligned}
$$

linear system of equations $\left(X^{\top} X+\lambda \mathbf{I}\right) w=X^{\top} y$
when using gradient descent, this term reduces the weights at each step (weight decay)

$$
w=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

the only part different due to regularization
$\lambda I$ makes it invertible, adds a small value to the diagonals $X^{\top} X$ we can have linearly dependent features the solution will be unique!

## Example: polynomial bases

## Without regularization:

- using $D=10$ we can perfectly fit the data (high test error)
degree 2 (D=3)


## Example: polynomial bases

## with regularization:



- fixed $D=10$, changing the amount of regularization



## Probabilistic interpretation

recall linear regression \& logistic regression maximize log-likelihood

$$
w^{M L E}=\arg \max _{w} p(y \mid X, w)
$$

linear regression

$$
w^{M L E}=\arg \max _{w} \prod_{x, y \in \mathcal{D}} \mathcal{N}\left(y \mid w^{\top} x, \sigma^{2}\right)
$$

logistic regression $\quad w^{M L E}=\arg \max _{w} \prod_{x, y \in \mathcal{D}} \operatorname{Bernoulli}\left(y ; \sigma\left(w^{\top} x\right)\right)$
can we do Bayesian inference instead of maximum likelihood?
$p(w \mid y, X) \propto p(w) p(y \mid w, X)$

## Maximum a Posteriori (MAP)

can we do Bayesian inference instead of maximum likelihood?

$$
p(w \mid y, X) \propto p(w) p(y \mid w, X)
$$

```
posterior prior likelihood
```

in general, this is expensive, but there's a cheap compromise:
MAP estimate $\quad w^{M A P}=\arg \max _{w} p(w) p(y \mid X, w)$

$$
=\underset{\text { likelihood: original objective }}{\arg \max _{w} \log p(y \mid X, w)}+\log p(w)
$$

all that is changing is the additional penalty on w

## Gaussian Prior

MAP estimate $\quad w^{M A P}=\arg \max _{w} \log p(y \mid X, w)+\log p(w)$ prior
assume independent zero-mean Gaussians
$\mathcal{N}(\mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$

$$
\log p(w)=\log \prod_{d=1}^{D} \mathcal{N}\left(w_{d} \mid 0, \tau^{2}\right)=-\sum_{d} \frac{w^{2}}{2 \tau^{2}}+\text { const. } \quad \begin{aligned}
& \text { does not depend on w } \\
& \text { so it doesn't affect the optimization }
\end{aligned}
$$

lets call $\frac{1}{\tau^{2}} \rightarrow \lambda$ then we get the L2 regularization penalty $\frac{\lambda}{2}\|w\|_{2}^{2}$
smaller variance of the prior $\tau$ gives larger regularization $\lambda$


## Laplace prior

another notable choice of prior is the Laplace distribution minimizing negative log-likelihood $\longrightarrow \sum_{d} \log p\left(w_{d}\right)=-\sum_{d} \frac{1}{\beta}\left|w_{d}\right|=-\frac{1}{\beta}\|w\|_{1}$

L1 regularization: $J(w) \leftarrow J(w)+\lambda\|w\|_{1}$ also called lasso
L1 norm of w
(least absolute shrinkage and selection operator)


## $L_{1}$ vs $L_{2}$ regularization

regularization path shows how $\left\{w_{d}\right\}$ change as we change $\boldsymbol{\lambda}$
Lasso produces sparse weights (many are zero, rather than small)

## Example <br> $D=8$


red-line is the optimal $\lambda$ from cross-validation, for lasso the model uses only 3 of the 8 features
$\Rightarrow$ lasso results in sparse models

## $L_{1}$ vs $L_{2}$ regularization

$\min _{w} J(w)+\lambda\|w\|_{p}^{p}$
is equivalent to $\min _{w} J(w)$ subject to $\|w\|_{p}^{p} \leq \tilde{\lambda}$ for an appropriate choice of $\tilde{\lambda}$
figures below show the constraint and the isocontours of $J(w)$
optimal solution with L1-regularization is more likely to have zero components


## Subset selection

p -norms with $p \geq 1$ are convex (easier to optimize)

$$
\mathrm{p} \text {-norms with } p \leq 1 \text { induces sparsity }
$$



$$
\left(\sum_{d} w_{d}^{4}\right)^{1 / 4}
$$

$\left(\sum_{d} w_{d}^{2}\right)^{\frac{1}{2}}$
$\sum_{d}\left|w_{d}\right|$
$\left(\sum_{d}\left|w_{d}\right|^{\frac{1}{2}}\right)^{2} \quad\left(\sum_{d}\left|w_{d}\right|^{\frac{1}{10}}\right)^{10}$
penalizes the number of features with non-zero weights

$$
J(w)+\lambda\|w\|_{0}=J(w)+\lambda \sum_{d} \mathbb{I}\left(w_{d} \neq 0\right)
$$

enforces a penalty of $\lambda$ for each feature to be included in the model $\Rightarrow$ performs feature selection

## Subset selection

p -norms with $p \geq 1$ are convex (easier to optimize)
p-norms with $p \leq 1$ induces sparsity


Closer to 0-norm $\longrightarrow L_{0}$ norm

L1 regularization is a viable alternative to LO regularization
optimizing $l_{0}$ regularization is a difficult combinatorial problem: search over all $2^{D}$ subsets

## Adding $L_{2}$ regularization



## Subgderivatives



L1 penalty is no longer smooth or differentiable (at 0)
extend the notion of derivative to non-smooth functions
sub-differential is the set of all sub-derivatives at a point

$$
\partial f(\hat{w})=\left[\lim _{w \rightarrow \hat{w}^{-}} \frac{f(w)-f(\hat{w})}{w-\hat{w}}, \lim _{w \rightarrow \hat{w}^{+}} \frac{f(w)-f(\hat{w})}{w-\hat{w}}\right]
$$

if $\boldsymbol{f}$ is differentiable at $\hat{\boldsymbol{w}}$ then sub-differential has one member $\frac{d}{d w} f(\hat{w})$

another expression for sub-differential

$$
\partial f(\hat{w})=\{g \in \mathbb{R} \mid f(w)>f(\hat{w})+g(w-\hat{w})\}
$$

## Subgradient

> example
subdifferential for

$$
\begin{aligned}
& f(w)=|w| \\
& \partial f(0)=[-1,1] \\
& \partial f(w \neq 0)=\{\operatorname{sign}(w)\}
\end{aligned}
$$

recall, gradient was the vector of partial derivatives subgradient is a vector of sub-derivatives
subdifferential for functions of multiple variables

$$
\partial f(\hat{w})=\left\{g \in \mathbb{R}^{D} \mid f(w)>f(\hat{w})+g^{\top}(w-\hat{w})\right\}
$$

we can use sub-gradient with diminishing step-size for optimization


## Adding $L_{1}$ regularization

L1-regularized linear regression has efficient solvers subgradient method for L1-regularized logistic regression do not penalize the bias $w_{0}$ using diminishing learning rate

```
def gradient(x, y, w, lambdaa):
    N,D = x.shape
    yh = logistic(np.dot(x, w))
    grad = np.dot(x.T, yh - y) / N
    grad[1:] += lambdaa * np.sign(w[1:])
    return grad
```

        note that the optimal \(w_{1}\) becomes 0
    



## Regularization serves many purposes

$$
\left.\underset{D \times 1}{w^{*}}=\underset{N \times N}{\left(X_{N}^{\top}\right.} \underset{N}{X}\right)^{-1} X^{\top} \underset{N \times 1}{y}
$$

what if $\quad X^{\top} X$ is not invertible?
add a small value to the diagonals, a.k.a. regularize
what if linear fit is not the best?
use nonlinear basis
How to avoid overfitting then? regularize
what if we want a sparse model?
do feature selection and only keep important parameters with regularizing

## Data normalization

what if we scale the input features, using different factors $\tilde{\tilde{x}_{d}}{ }^{(n)}=\gamma_{d} x_{d}^{(n)} \forall d, n$ if we have no regularization: $\quad \tilde{w}_{d}=\frac{1}{\gamma_{d}} w_{d} \forall d$

$$
\text { everything remains the same because: } \quad\|X w-y\|_{2}^{2}=\|\tilde{X} \tilde{w}-y\|_{2}^{2}
$$

with regularization: $\|\tilde{w}\|_{2} \neq\|w\|_{2}^{2}$ so the optimal $\mathbf{w}$ will be different! features of different mean and variance will be penalized differently

$$
\text { normalization }\left\{\begin{array}{l}
\mu_{d}=\frac{1}{N} x_{d}^{(n)} \\
\sigma_{d}^{2}=\frac{1}{N-1}\left(x_{d}^{(n)}-\mu_{d}\right)^{2}
\end{array}\right.
$$

makes sure all features have the same mean and variance $x_{d}^{(n)} \leftarrow \frac{x_{d}^{(n)}-\mu_{d}}{\sigma_{d}}$ we saw that this also helps with the optimization!

## Summary

- complex models can overfit to training data
- regularization avoids this by penalizing model complexity
- L1 \& L2 regularization
- probabilistic interpretation: different priors on weights
- L1 produces sparse solutions (useful for feature selection)

