Applied Machine Learning

Gradient Descent Methods

Reihaneh Rabbany

Learning objectives

Basic idea of

- gradient descent
- stochastic gradient descent
- method of momentum
- using an adaptive learning rate
- sub-gradient

Application to

- linear regression and classification

Optimization in ML

The core problem in ML is parameter estimation (aka model fitting), which requires solving an optimization problem of the loss/cost function

Optimization is a huge field

- discrete (combinatorial) vs continuous variables
- constrained vs unconstrained
- for continuous optimization in ML:
bold marks
the settings
we consider
in this class
- convex vs non-convex
- looking for local vs global optima?
- analytic gradient?
- analytic Hessian?
- stochastic vs batch
- smooth vs non-smooth

Optimization in ML

The core problem in ML is parameter estimation (aka model fitting), which requires solving an optimization

$$
J(w)=\frac{1}{N} \sum_{n=1}^{N} l\left(y^{(n)}, f\left(x^{(n)} ; w\right)\right)
$$

problem of the loss/cost function

Recall

Linear Regression:

$$
\hat{y}=f_{w}(x)=w^{\top} x: \mathbb{R}^{D} \rightarrow \mathbb{R}
$$

Logistic Regression:

$$
\hat{y}=f_{w}(x)=\sigma\left(w^{\top} x\right): \mathbb{R}^{D} \rightarrow\{0,1\}
$$

$$
J_{w}=\frac{1}{N} \sum_{n} \frac{1}{2}\left(y^{(n)}-\hat{y}^{(n)}\right)^{2}
$$

$$
J_{w}=\frac{1}{N} \sum_{n}-y \log \left(\hat{y}^{(n)}\right)-\left(1-y^{(n)}\right) \log \left(1-\hat{y}^{(n)}\right)
$$

$$
\text { partial derivatives: } \quad \frac{\partial}{\partial w_{d}} J_{w}=\frac{1}{N} \sum_{n}\left(\hat{y}^{(n)}-y^{(n)}\right) x_{d}^{(n)}
$$

$$
\nabla J(w)=\frac{1}{N} \sum_{n}\left(\hat{y}^{(n)}-y^{(n)}\right) x^{(n)}
$$

how to find w^{*} given $\nabla J(w)$?

Gradient

Recall

for a multivariate function $J\left(w_{0}, w_{1}\right)$
partial derivatives instead of derivative
= derivative when other vars. are fixed
$\frac{\partial}{\partial w_{1}} J\left(w_{0}, w_{1}\right) \triangleq \lim _{\epsilon \rightarrow 0} \frac{J\left(w_{0}, w_{1}+\epsilon\right)-J\left(w_{0}, w_{1}\right)}{\epsilon}$
we can estimate this numerically if needed (use small epsilon in the formula above)
gradient: vector of all partial derivatives

$$
\nabla J(w)=\left[\frac{\partial}{\partial w_{1}} J(w), \cdots \frac{\partial}{\partial w_{D}} J(w)\right]^{T}
$$

Gradient descent

an iterative algorithm for optimization

- starts from some $w^{\{0\}}$
new notation!
- update using gradient $w^{\{t+1\}} \leftarrow w^{\{t\}}-\alpha \nabla J\left(w^{\{t\}}\right)$
steepest descent direction
learning rate cost function
converges to a local minima

$$
\nabla J(w)=\left[\frac{\partial}{\partial w_{1}} J(w), \cdots \frac{\partial}{\partial w_{D}} J(w)\right]^{T}
$$

Convex function

a convex subset of \mathbb{R}^{N} intersects any line in at most one line segment

a convex function is a function for which the epigraph is a convex set

epigraph: set of all points above the graph

Minimum of a convex function

Convex functions are easier to minimize:

- critical points are global minimum
- gradient descent can find it

$$
w^{\{t+1\}} \leftarrow w^{\{t\}}-\alpha \nabla J\left(w^{\{t\}}\right)
$$

convex

non-convex: gradient descent may find a local optima

Recognizing convex functions

a constant function is convex $f(x)=c$
a linear function is convex $f(x)=w^{\top} x$
convex if second derivative is positive everywhere $\frac{d^{2}}{x^{2}} f \geq 0 \quad \forall x$
examples $x^{2 d}, e^{a x},-\log (x),-\sqrt{x}$

$$
\begin{aligned}
& x \log (x), x>0 \\
& x^{a}, x>0, a>1
\end{aligned}
$$

Recognizing convex functions

sum of convex functions is convex

example 2:
sum of squared errors

$$
J(w)=\|X w-y\|_{2}^{2}=\sum_{n}\left(w^{\top} x^{(n)}-y\right)^{2}
$$

maximum of convex functions is convex

example 1:

example 2:

$$
f(y)=\max _{x \in[0,2]} x^{3} y^{4}=9 y^{4}
$$

Recognizing convex functions

composition of convex functions is generally not convex

example

$$
(-\log (x))^{2}
$$

however, if f, g are convex, and g is non-decreasing, then $g(f(x))$ is convex
example

$$
e^{f(x)}
$$

for convex \boldsymbol{f}
Composition with affine map (linear function) is also convex, e.g. $f\left(w^{\top} x-y\right)$ if f is convex

Recognizing convex functions

is the logistic regression cost function convex in model parameters (w)?

$$
\begin{aligned}
& \mathrm{Og}\left(1+e^{-w^{\top} x}\right)+\left(1-y^{(n)}\right) \\
& \text { same argument } \\
& \\
& \\
& \\
& \\
& \text { checking second derivative }\left(1+e^{w^{\top} x}\right) \\
& \frac{\partial^{2}}{\partial z^{2}} \log \left(1+e^{z}\right)=\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}} \geq 0
\end{aligned}
$$

Gradient for linear and logistic regression

in both cases: $\quad \nabla J(w)=\frac{1}{N} \sum_{n} x^{(n)}\left(\hat{y}^{(n)}-y^{(n)}\right)=\frac{1}{N_{D \times N}} X_{N \times 1}^{\top}(\underset{N \times 1}{y}-\underset{\sim}{y})$

linear regression:

$$
\begin{aligned}
& \hat{y}=w^{\top} x \\
& \hat{y}=\sigma\left(w^{\top} x\right)
\end{aligned}
$$

logistic regression:

```
def gradient(x, y, w):
    N,D = x.shape
    yh = logistic(np.dot(x, w))
    grad = np.dot(x.T, yh - y) / N
    return grad
```


time complexity: $\mathcal{O}(N D)$

(two matrix multiplications)
compared to the direct solution for linear regression: $\mathcal{O}\left(N D^{2}+D^{3}\right)$ gradient descent can be much faster for large D

Gradient Descent

implementing gradient descent is easy!

```
def GradientDescent(x, # N x D
    y, # N
    lr=.01, # learning rate
    eps=1e-2, # termination codition
        ) :
    N,D = x.shape
    w = np.zeros(D)
    g = np.inf
    while np.linalg.norm(g) > eps:
        g = gradient(x, y, w)
        w = w - lr*g
    return w
```


Some termination condition:

- some max \#iterations
- small gradient
- a small change in the objective
- increasing error on validation set

example GD for linear regression

example GD for linear regression

After 22 steps $w^{\{t+1\}} \leftarrow w^{\{t\}}-.01 \nabla J\left(w^{\{t\}}\right)$

Learning rate α

Learning rate has a significant effect on GD
example, $\mathrm{D}=1$ linear regression
example, D=2 linear regression 50 gradient steps

$$
\alpha=.01
$$

$J(w)$

$$
\alpha=.05
$$

w
too small: may take a long time to converge
too large: it overshoots or even diverges

learning rate $=0.12$

do a grid search usually between 0.001 to 1 to find the right value, look at the training curves

Stochastic Gradient Descent

we can write the cost function as an average over instances
$J(w)=\frac{1}{N} \sum_{n=1}^{N} J_{n}(w) \begin{aligned} & \text { cost for a single data-point } \\ & \text { e.g. for linear regression }\end{aligned} J_{n}(w)=\frac{1}{2}\left(w^{T} x^{(n)}-y^{(n)}\right)^{2}$
the same is true for the partial derivatives

$$
\frac{\partial}{\partial w_{j}} J(w)=\frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial w_{j}} J_{n}(w)
$$

therefore $\quad \nabla J(w)=\mathbb{E}_{\mathcal{D}}\left[\nabla J_{n}(w)\right]$

Stochastic Gradient Descent

Idea: use stochastic approximations $\nabla J_{n}(w)$ in gradient descent
stochastic gradient update

$$
w \leftarrow w-\alpha \nabla J_{n}(w)
$$

the steps are "on average" in the right direction

each step is using gradient of a different cost, $J_{n}(w)$
each update is $(1 / \mathrm{N})$ of the cost of batch gradient
e.g., for linear regression $\mathcal{O}(D)$
$\nabla J_{n}(w)=x^{(n)}\left(w^{\top} x^{(n)}-y^{(n)}\right)$
batch gradient update

$$
w \leftarrow w-\alpha \nabla J(w)
$$

with small learning rate: guaranteed improvement at each step

SGD for logistic regression example

logistic regression for Iris dataset ($\mathrm{D}=2, \alpha=.1$)

```
batch gradient
```


stochastic gradient

Convergence of SGD

stochastic gradients are not zero even at the optimum w how to guarantee convergence?
idea: schedule to have a smaller learning rate over time

Robbins Monro

the sequence we use should satisfy: $\sum_{t=0}^{\infty} \alpha^{\{t\}}=\infty$
\& otherwise for large $\left\|w^{\{0\}}-w^{*}\right\|$ we can't reach the minimum the steps should go to zero $\sum_{t=0}^{\infty}\left(\alpha^{\{t\}}\right)^{2}<\infty$

$$
\alpha^{\{t\}}=\frac{10}{t}, \alpha^{\{t\}}=t^{-.51}
$$

Minibatch SGD

use a minibatch to produce gradient estimates

$$
\begin{aligned}
& \nabla J_{\mathbb{B}}=\frac{1}{|\mathbb{B}|} \sum_{n \in \mathbb{B}} \nabla J_{n}(w) \\
& \mathbb{B} \subseteq\{1, \ldots, N\} \text { a subset of the dataset }
\end{aligned}
$$

SGD minibatch-size=16

SGD minibatch-size=1

Oscillations

gradient descent can oscillate a lot!

in SGD this is worsened due to noisy gradient estimate

Momentum

to help with oscillations:

- use a running average of gradients
- more recent gradients should have higher weights

$$
\begin{aligned}
& \Delta w^{\{t\}} \leftarrow \beta \Delta w^{\{t-1\}}+(1-\beta) \nabla J_{\mathbb{B}}\left(w^{\{t-1\}}\right) \\
& w^{\{t\}} \leftarrow w^{\{t-1\}}-\alpha \Delta w^{\{t\}} \quad \begin{array}{c}
\text { Iomentum of oreduces to SGD } \\
\text { common value > }
\end{array}
\end{aligned}
$$

is effectively an exponential moving average

$$
\Delta w^{\{T\}}=\sum_{t=1}^{T} \beta^{T-t}(1-\beta) \nabla J_{\mathbb{B}}\left(w^{\{t\}}\right)
$$

there are other variations of momentum with similar idea

Momentum

Example: logistic regression no momentum

with momentum

$\alpha=.5, \beta=.99,|\mathbb{B}|=8$

Adagrad (Adaptive gradient)

use different learning rate for each parameter w_{d}
also make the learning rate adaptive

$$
S_{d}^{\{t\}} \leftarrow S_{d}^{\{t-1\}}+\frac{\partial}{\partial w_{d}} J\left(w^{\{t-1\}}\right)^{2}
$$

sum of squares of derivatives over all iterations so far (for individual parameter)
$w_{d}^{\{t\}} \leftarrow w_{d}^{\{t-1\}}-\frac{\alpha}{\sqrt{S_{d}^{\{t\}}+\epsilon}} \frac{\partial}{\partial w_{d}} J\left(w^{\{t-1\}}\right)$
the learning rate is adapted to previous updates
$\boldsymbol{\epsilon}$ is to avoid numerical issues
useful when parameters are updated at different rates
(e.g., sparse data when some features are often zero when using SGD)

Adagrad (Adaptive gradient)

different learning rate for each parameter w_{d}
make the learning rate adaptive
$\alpha=.1,|\mathbb{B}|=1, T=80,000$

problem: the learning rate goes to zero too quickly

RMSprop
(Root Mean Squared propagation)
solve the problem of diminishing step-size with Adagrad

- use exponential moving average instead of sum (similar to momentum)
instead of Adagrad: $S_{d}^{\{t\}} \leftarrow S_{d}^{\{t-1\}}+\frac{\partial}{\partial w_{d}} J\left(w^{\{t-1\}}\right)^{2}$

$$
S^{\{t\}} \leftarrow \gamma S^{\{t-1\}}+(1-\gamma) \nabla J\left(w^{\{t-1\}}\right)^{2}
$$

$$
w^{\{t\}} \leftarrow w_{\{t-1\}}-\frac{\alpha}{\sqrt{S^{\{t\}}+\epsilon}} \nabla J\left(w^{\{t-1\}}\right) \quad \text { identical to Adagrad }
$$

note that $S^{\{t\}}$ here is a vector and with the square root is element-wise

Adam (Adaptive Moment Estimation)

two ideas so far:

1. use momentum to smooth out the oscillations
2. adaptive per-parameter learning rate

Adam combines the two:

$$
\begin{array}{ll}
M^{\{t\}} \leftarrow \beta_{1} M^{\{t-1\}}+\left(1-\beta_{1}\right) \nabla J\left(w^{\{t-1\}}\right) & \begin{array}{l}
\text { identical to method of momentum } \\
\text { (moving average of the first moment) }
\end{array} \\
S^{\{t\}} \leftarrow \beta_{2} S^{\{t-1\}}+\left(1-\beta_{2}\right) \nabla J\left(w^{\{t-1\}}\right)^{2} & \begin{array}{l}
\text { identical to RMSProp } \\
\text { (moving average of the second moment) }
\end{array} \\
w^{\{t\}} \leftarrow w^{\{t-1\}}-\frac{\alpha}{\sqrt{\hat{S}^{\{t\}}}+\epsilon} \hat{M} & \hat{M}^{\{t\}}
\end{array}
$$

since M and S are initialized to be zero, at early stages they are biased towards zero

$$
\hat{M}^{\{t\}} \leftarrow \frac{M^{\{t\}}}{1-\beta_{1}^{t}} \quad \hat{S}^{\{t\}} \leftarrow \frac{S^{\{t\}}}{1-\beta_{2}^{t}}
$$

for large time-steps it has no effect for small t, it scales up numerator

In practice

the list of methods is growing ...
they have recommended range of parameters

- learning rate, momentum etc.
still may need some hyper-parameter tuning

these are all first order methods

- they only need the first derivative
- 2nd order methods can be much more effective, but also much more expensive

Summary

learning: optimizing the model parameters (minimizing a cost function) use gradient descent to find local minimum

- easy to implement (esp. using automated differentiation)
- for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

- Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization
- Momentum: exponential running average to help with the noise
- Adagrad \& RMSProp: per parameter adaptive learning rate
- Adam: combining these two ideas

