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Learning objectives

* |inear model

e evaluation criteria

e how to find the best fit

e geometric interpretation

e maximum likelihood interpretation



output

|nput ML algorithm y
featu res with parameters 6

labels
Notation f(;0)
. . -D R denotes set of real numbers
each instance: r € R
y 6 R ) ) R

x1 | afeature

L9 -
vectors are assume to be column vectors * = . = [zcl, Ly oy LBD]

LD

example -

<tumorsize, texture, perimeter> = <18.2, 27.6, 117.5> 9 growth = +2

— [18.2, 27.6, 117.5] y =2

L = [1131, L2, w3]T


https://en.wikipedia.org/wiki/Real_number

output

|nput ML algorithm y
featu res with parameters 6

labels
Notation f(z(™;0)
training: parameter estimation
i(ns';ance nugber D — {(m(n),y(n)) 7]272
each instance: " c R
we assume N instances in the dataset D = {(z™,y™)},

each instance has D features indexed by d

for example, xfi”) € R is the feature d of instance n



Notation D = {(=™,y™)}V,

design matrix: concatenate all instances
each row is a datapoint, each column is a feature
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one feature

Example:
instances: 5 documents

features: 7 words
itis a puppy

itis a kitten

itisa cat

thatis a dog and thisis a pen
itis a matrix

it

is puppy cat

pen
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Example:

Micro array data (X), contains
gene expression levels

labels (y) can be {cancer/no
cancer classification} label for
each patient, or how fast it is
growing (regression)

patient (n
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Regression: examples e

How fast is it growing? 1.5

predicted observed
blind top ranked crystal structure

Protein folding.
input: sequences
output: 3D structure

Age-estimating.
input: face
output: age

image from Microsoft
age estimator here

Colourization.
input: gray scale image
output: colour image

Image from Zhang et al. link



https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233603/
https://arxiv.org/abs/1603.08511

Origin of Regression

Method of least squares was invented by Legendre and Gauss (1800's)
Gauss used it to predict the future location of Ceres (largest asteroid in the asteroid belt)

Gauss
used it

Legendre
published it

Pearson
named it regression

ocean navigation
image from wiki history of navigation
find more here


https://priceonomics.com/the-discovery-of-statistical-regression/

Linear model of regression

mput ML algorithm y
featu res with parameters w
f(z;w)

output
labels

fw(r) = wy +wizy + ... +wpxp

model parameters or weights l

[w(),wl7 " 'wD] bias or intercept

assuming a scalar output ~ f, : RP - R



Linear model of regression: example D =1

forms a linein 1 dimension

fao(T) = wo + wiz
\
model parameters or weights [
[w()a wl] 1A

9

D

fw(O) . bias or intercept ¢— : i i
0 3 1z 15 &




Linear model of regression

fw(xr) = wy +wizy + ... +wpzp
J

model parameters or weights l

bias or intercept

simplification

concatenatealto* —— =z =|[l,z1,...,zp|

fo(lz) =w'z w = [wo, Wi, ..., wp]

T

-
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Linear regression: objective

objective: find parameters to fit the data

model: f,(z) = w'x

example D =1

w = [wOa wl]
Which line is better?

Y,

11



Linear regression: objective

objective: find parameters to fit the data

true: y(l) p—
predicted: g(l) — f(x(]‘)) ——

residual: y(l) — fw(iv(l))

difference between
predicted (model output)
and true (observation)




Linear regression: objective

objective: find parameters to fit the data

how to consider all
observations? sum all
residuals?

square error loss
(a.k.a. L2 loss)

L(ya g) = (y - g)z

13



Linear regression: cost function

objective: find parameters to fit the data
minimize a measure of difference between §™ = f, () and y™

square error loss (a.k.a. L2loss) L(y,§) = 5(y — 9)?

for a single instance (a function of labels)

for future convenience
versus

for the whole dataset

sum of squared errors cost function

2
J(w) = %25:1 (y(n) — wTa;(n)) |t prr

w* = argmin,, J(w)

14



> & = |X1]

Linear Least Squares solution: w* = argmin,, Y., 1 (y(">

15
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Minimizing the cost
Simple case:

model: fw (m) = WL

both scalar

cost function J(w) = %Zn(y(n) _ fwa:(”))2

% _ Zn (") (’UJCE(n) L y(n)) G 51N

10 0
(M (™) Ll
n L

(n)2

setting the derivative to zero * = Zn

2.

global minimum because the cost function is smooth and convex

more on convexity layer




Minimizing the cost _ _

model: f, (z) = wy + w1z

cost: a multivariate function J(wq, w1)

1 (with intercept)

data space

the cost function is a
smooth function of w

find minimum by setting
partial derivatives to zero
18




Minimizing the cost

for a multivariate function J(wq, w1)

partial derivatives instead of derivative

0

A qs J(w0+e,'w1)—J('w0,w1)
3—WJ(QU0, wl) = lim, g .

critical point: all partial derivatives are zero

gradient: vector of all partial derivatives

VI(w) = [ga; J(w), gy J(w)]
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Minimizing the cost
for general case

find the critical point by setting %J(w) =0

23, 5™ — fu(®))? =0

using chain rule: % = 51]:’] g{uzz

cost is a smooth and convex function of w

weget >, (w'zl® — y(”))xgl) =0 Vde{l,...,D}  iemen

term here, with the bias
term, it would be D+1
equations and D+1

D equations with D unknowns unknown fordin[00] 20



Linear regression: Matrix form

instead of — fwT

Note: D is in fact dimensions of the
input +1 due to the simplification
and adding the bias/intercept term

use design matrix to write

|
S

Linear least squares arg min,, 1|jy — Xw||; = 1(y — Xw)' (y — Xw)

squared L2 norm of the residual vector
21



Minimizing the cost: Matrix form

Linear least squares

J(w) = 5lly — Xwl]* = 3(y — Xw)" (y — Xw)

yI Xw =wl XTy

0J(w) _ D lyTy + wl XT Xw — 2y7 Xw]

85(10 XT

w

Using matrix differentiation 8wa Xw _ 95,
w

0J (w
) — 0+ 2XTXw —2XTy = 2XT(Xw — y)

22


https://en.wikipedia.org/wiki/Matrix_calculus

Closed form solution

X T X 0
(y —_ w) p— O matrix form (using the design matrix)

X'"Xw= X"y systemofD linear equations (Aw = b)

similar to non-matrix form: optimal weights w* satisfy

> (Y™ — wTa:(”))a:((in) =0 Vd

w* — (XTX)_lXTy D equations with D unknowns

closed form solution

23



Geometric
interpretation

Closed form solution

y— Xw
I1

X—l_ (y _ Xw) p— 6 matrix form (using the design ma

Normal equation: because for optimal w, the residual

vector is normal to column space of the design matrix

<>

-
L2

2nd column of
the design matrix

X" Xw = XTy system of D linear equations (Aw = b)

j=Xw=X(X'X)'X"'
’u]* p— (XTX)_lXTy yprojection matrixinto(column sgace of X J

closed form solution 24



Unigueness of the solution

we can get a closed form solution! w* = (X' X)X Ty
unless D > N
or when the X ' X matrix is not invertible
this matrix is not invertible when some of eigenvalues are zero!

that is, if features are completely correlated

... or more generally if features are not linearly independent

having a binary feature @1 as well as its negation o = (1 — 1)

25



Time complexity

w' = (XTX) 1XTy
|

O(ND) D elements, each using N ops.

O(D?*N) D x D elements, each requiring N multiplications

total complexity foris O(ND? + D*) which becomes O(ND?) for N > D

in practice we don't directly use matrix inversion (unstable)

however, other more stable solutions (e.g, Gaussian elimination) have similar complexity

26



Multiple targets

instead of Y € RY wehave Y € RNVXD

a different weight vectors for each target

A

Y =XW

W*=(X"X)'XTY

(1) (1) Wo.1 Wy 2
Y Y 1) (1) (1 ) :
" ) ﬁ%z)-‘ 1 oz, =, -+, zp ’rwm w1,2
Y = 1 =11 : : : : Wi W2
N (V) )
N) ~(N) 1 w( ) Ty ZTp o
Y1 Yo WD,1 WD,2
(1 1 1 1
yg ) — wo,1 + xg )w1,1 = mé )w2,1 S 000 9F Ji(D)wD,l
A(1 1 1 1
yé ) = wo,2 + :Bg )w1,2 ar :Bg )’wz,z o 00 aF :Ii(D)wD,z
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Fitting non-linear data

so far we learned a linear function fu = Zd WL

sometimes this may be too simplistic - — cormect model

linear fit

example
Synthetic data when we generated data
from a function y* _ Sin(w) + cos(\/E)

_ (n) *( (n)) }N S I T S S
D = { (CE Y \T + € n—1 .
we see linear fit is not close to correct model that
the data is generated from, can we get a better fit?

small
noise

m create new more useful features out of initial set of given features

e.g., o3, z1x2,log(z), how about &} + 2z3 ?
28



Nonlinear basis functions

so far we learned a linear function fu, = ), WqZ4q

let's denote the set of all features by ¢4 (x)Vd

the problem of linear regression doesn't change fw = Zd wq ¢a(x)

solution simply becomes (&' ®)w* = &'y

replacing X with ®
a (nonlinear) feature

¢1($(1))a ¢2(=’E(1))7 T ¢D(33(1))
$1(z?), da(2®), -, ¢p(=?)

b @), a(@™), -, p(™)

da(z) is the new x

one instance

29



Nonlinear basis functions

EIEIN original inputisscalar z € R

I 1
\ A
0.75 ! 0.75
0.5 . 05
0.25 - 0.25 j
0 0
1 0

-1 0 1 — 1

polynomial bases Gaussian bases Sigmoid bases

(z—pg)

dr(z) = z* or(z) = e 7 2 (@) = — o

1+e




Linear regression with nonlinear bases: example

Gaussian bases
_ (zpg

Pp(z) =€ ¥

)2

we are using a fixed standard deviation of s=1

9 = w4+ 3, widn (@)

curve-fitting using nonlinear Gaussian bases

the green curve (our fit)
_is the sum of these
e ) scaled Gaussian bases
—_ oundinh ; 7 plus the intercept. Each
our fit o
intercept basis is scaled by the
corresponding weight

0 2 4 6 8 10

Sigmoid bases

() = — e
1+e s

we are using a fixed standard deviation of s=1

curve-fitting using nonlinear Sigmoid bases

= ground truth
— our fit
intercept

0 2 4 6 8 10

31



Probailistic interpretation

BN siven the dataset D = {(zV,yW), ..., (™), yM)}

learn a probabilistic model p(y|z;w)

consider p(y|z;w) with the following form

puly | z) =Ny |w'z,o?) = Lie 5

assume a fixed variance, say o¢% =1

Q: how to fit the model?
A: maximize the conditional likelihood!

image from here

32


http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Maximum likelihood & linear regression

1 . (y_wT m)z

IETERIRY 5y | 25 w0) = N (y | w7 2,0%) = e 5

Y e w!z NN L(w) = [1p(y™ | 2™);w)

kg T ((w) = Y, — 5 (y™ — w' 2(™)2 + constants

AL R e
&

> e 578 :
N AR E I w* = arg max, {(w) = argmin,, 1 > (y™ —wz™)?
: | | linear least squares!

_,335

image from here

whenever we use square loss, we are assuming Gaussian noise!


http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Summary

linear regression:

e models targets as a linear function of features

e fit the model by minimizing the sum of squared errors
e has a direct solution with o(~ND? + D3) complexity

e probabilistic interpretation

we can build more expressive models:

e using any number of non-linear features

34



