Applied Machine Learning

Support Vector Machines

Reihaneh Rabbany

Learning objectives

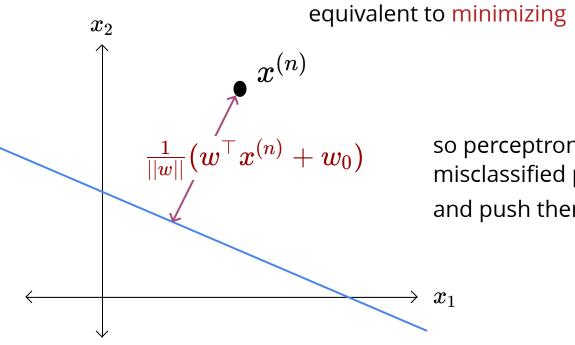
geometry of linear classification
margin maximization and support vectors
hinge loss and relation to logistic regression

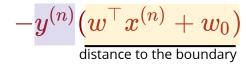
Perceptron: objective

if $y^{(n)}\hat{y}^{(n)} < 0$ try to make it positive

note that y is -1 or 1 instead of 0 or 1

label and prediction have different signs $\hat{y}^{(n)} = \text{sign}(w^{\top}x^{(n)} + w_0)$

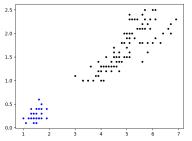




this is positive for points that are on the wrong side

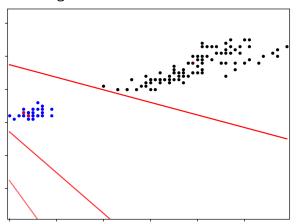
so perceptron tries to minimize the distance of misclassified points from the decision boundary and push them to the right side

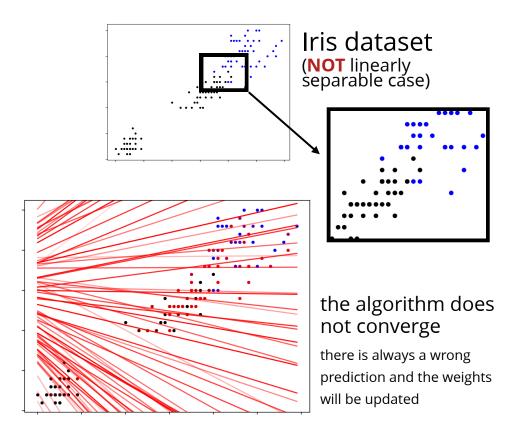
Perceptron: example



Iris dataset (linearly separable case)

converged at iteration 10



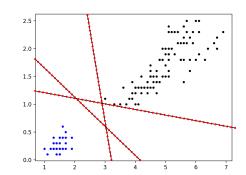


Perceptron: issues

Perceptron is not expressive enough increase the model's expressiveness by adaptive nonlinear bases, discussed in previously in MLP previously

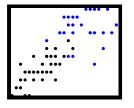
even if linearly separable convergence could take many iterations the decision boundary may be suboptimal \leftarrow

let's fix this problem first assume linear separability



cyclic updates if the data is not perfectly linearly separable

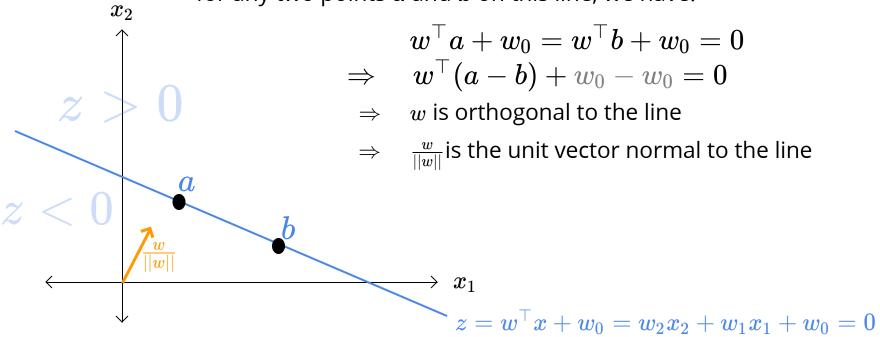
data may be inherently noisy



geometry of the separating hyperplane

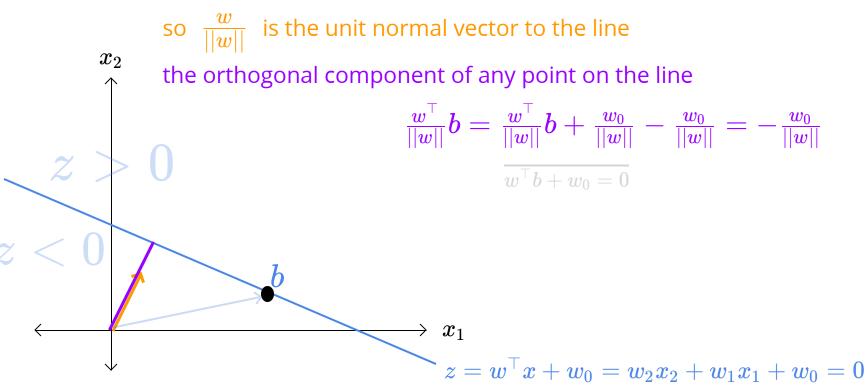
A linear decision boundary is a hyperplane with one dimension lower than D (number of features)

for any two points **a** and **b** on this line, we have:



geometry of the separating hyperplane

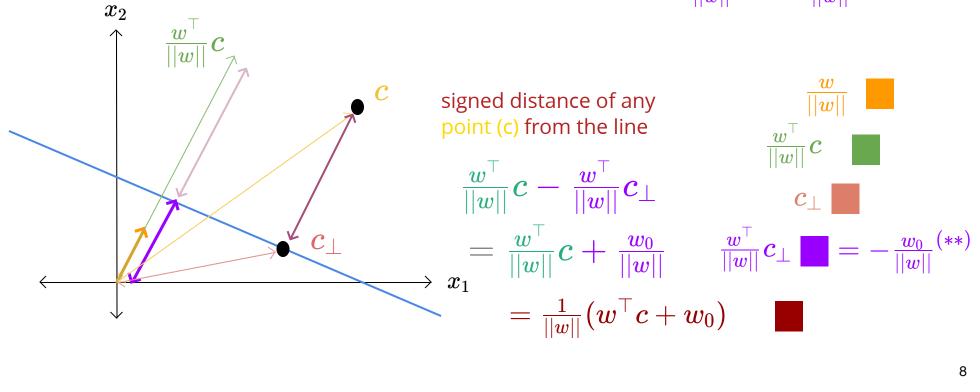
A linear decision boundary is a hyperplane with one dimension lower than D (number of features)



geometry of the separating hyperplane

the orthogonal component of any point on the line $rac{w^{+}}{||w||}b=-rac{w_0}{||w||}:^{(**)}$

$$rac{w^ op}{||w||}b = -rac{w_0}{||w||} :^{(**)}$$



Margin

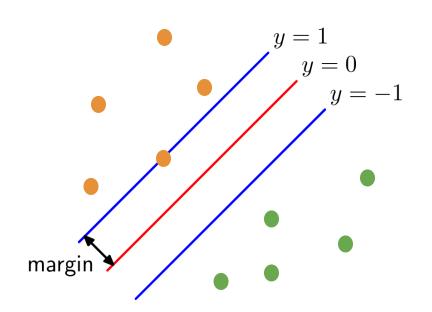
the margin of a classifier (assuming correct classification) is the distance of the closest point to the decision boundary

signed distance is
$$\ \ rac{1}{||w||}(w^ op x^{(n)} + w_0)$$

adjust so that correctly classified points have positive margin

$$rac{1}{||w||}(w^ op x^{(n)}+w_0)y^{(n)}$$
 $\hat{y}^{(n)= ext{distance to the boundary}}$

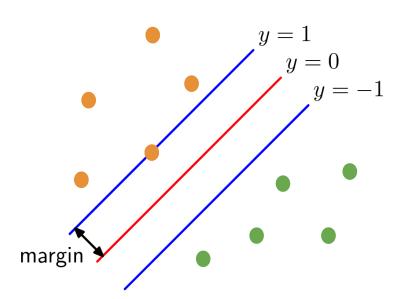
this is positive for points that are on the right side



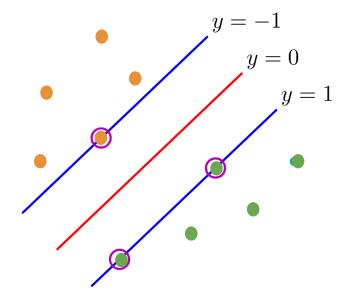
Max margin classification

find the decision boundary with maximum margin

margin is not maximal

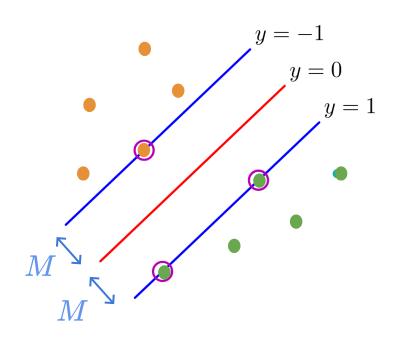


maximum margin



Max margin classification

find the decision boundary with maximum margin



$$egin{cases} \max_{w,w_0} M \ M \leq rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) & orall n \end{cases}$$

only the points (n) with

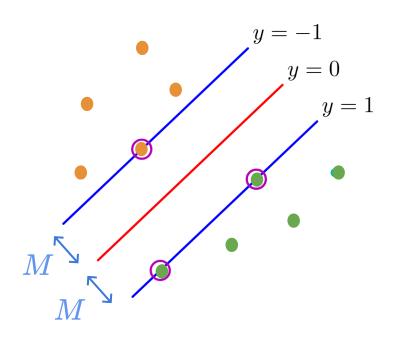
$$M = rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0)$$
 matter in finding the boundary

these are called **support vectors**

max-margin classifier is called **support vector machine** (SVM)

Support Vector Machine

find the decision boundary with maximum margin



$$egin{cases} \max_{w,w_0} M \ M \leq rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) & orall n \end{cases}$$

observation

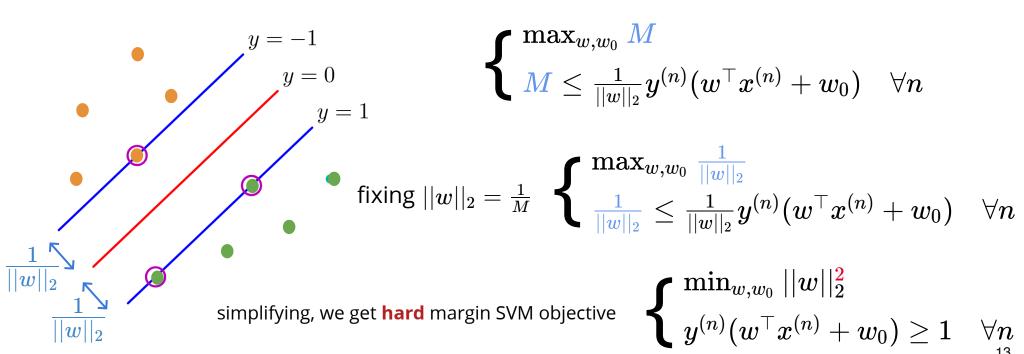
if w^*, w_0^* is an optimal solution then

 $20w^*, 20w_0^*$ is also optimal (same margin)

fix the norm of w to avoid this $||w||_2=rac{1}{M}$

Support Vector Machine

find the decision boundary with maximum margin

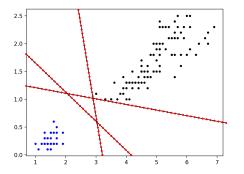


Perceptron: issues

Perceptron is not expressive enough increase the model's expressiveness by adaptive nonlinear bases, discussed in previously in MLP

previously

even if linearly separable convergence could take many iterations the decision boundary may be suboptimal



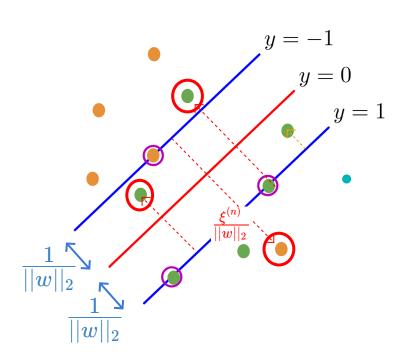
maximize the **hard** margin

cyclic updates if the data is not perfectly linearly separable

• data may be inherently noisy

Soft margin constraints

allow points inside the margin and on the wrong side but penalize them



instead of hard constraint $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$ orall n use $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1-m{\xi}^{(n)}$ orall n

 $\xi^{(n)} \geq 0$ slack variables (one for each n)

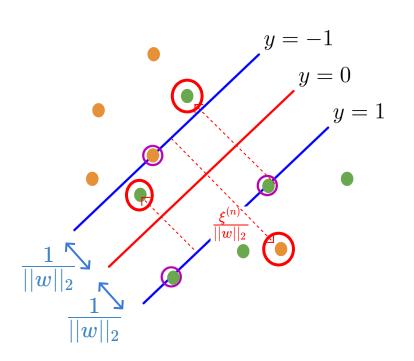
 $\xi^{(n)}=0$ zero if the point satisfies original margin constraint

 $0 < \xi^{(n)} < 1$ if correctly classified but inside the margin

 $\xi^{(n)} > 1$ incorrectly classified

Soft margin constraints

allow points inside the margin and on the wrong side but penalize them



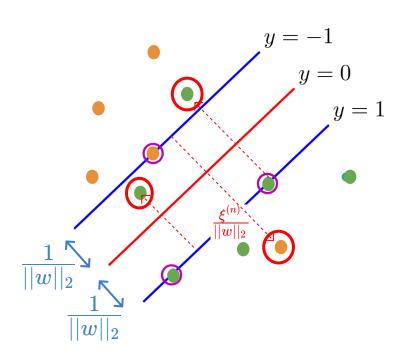
soft-margin objective

$$egin{aligned} \min_{w,w_0} rac{1}{2}||w||_2^2 + oldsymbol{\gamma} \sum_n oldsymbol{\xi}^{(n)} \ & y^{(n)}(w^ op x^{(n)} + w_0) \geq 1 - oldsymbol{\xi}^{(n)} & orall n \ & oldsymbol{\xi}^{(n)} > 0 \quad orall n \end{aligned}$$

 γ is a hyper-parameter that defines the importance of constraints for very large γ this becomes similar to hard margin sym

Hinge loss

would be nice to turn this into an unconstrained optimization



$$egin{aligned} \min_{w,w_0} \ rac{1}{2} ||w||_2^2 + \gamma \sum_n oldsymbol{\xi^{(n)}} \ y^{(n)} (w^ op x^{(n)} + w_0) &\geq 1 - oldsymbol{\xi^{(n)}} \ oldsymbol{\xi^{(n)}} &\geq 0 \quad orall n \end{aligned}$$

if point satisfies the margin $\ y^{(n)}(w^ op x^{(n)}+w_0) \geq 1$ minimum slack is $\ \xi^{(n)}=0$

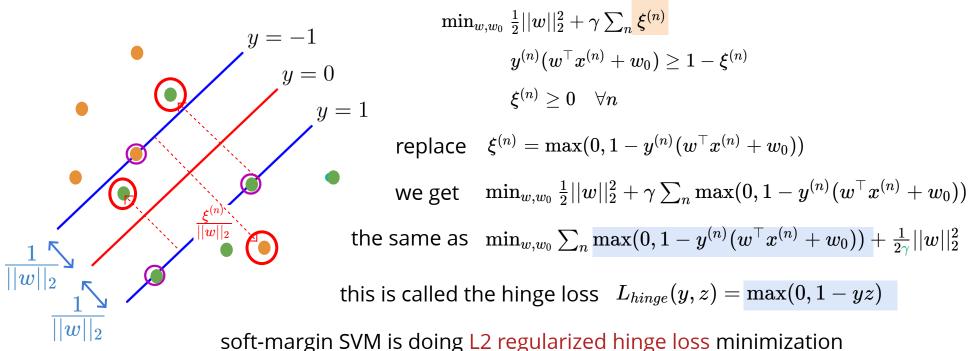
otherwise
$$y^{(n)}(w^ op x^{(n)}+w_0)<1$$
 the smallest slack is $oldsymbol{\xi}^{(n)}=1-y^{(n)}(w^ op x^{(n)}+w_0)$

so the optimal slack satisfying both cases

$$m{\xi}^{(n)} = \max(0, 1 - y^{(n)}(w^ op x^{(n)} + w_0))$$

Hinge loss

would be nice to turn this into an unconstrained optimization



cost

ontimization

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero otherwise it is $-y^{(n)}(w^{ op}x^{(n)}+w_0)$ can be written as

$$\sum_n \max(0, -y^{(n)}(w^ op x^{(n)} + w_0))$$

finds some linear decision boundary if exists

stochastic gradient descent with fixed learning rate

SVM

$$\sum_n \max(0,1-y^{(n)}(w^ op x^{(n)}+w_0))+rac{\lambda}{2}||w||_2^2$$
 so this is the difference!

(plus regularization)

optimization

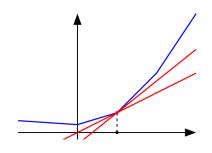
for small lambda finds the max-margin decision boundary

depending on the formulation we have many choices

Perceptron vs. SVM

cost
$$J(w) = \sum_n \max(0, 1 - y^{(n)} w^ op x^{(n)}) + rac{\lambda}{2} ||w||_2^2$$
 now we included bias in W

check that the cost function is convex in w(?)



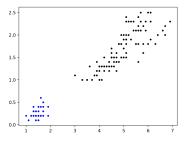
hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

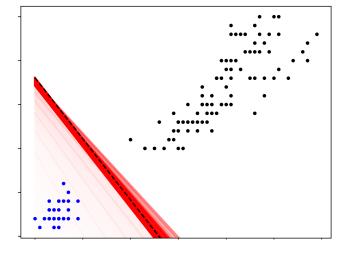
if
$$y^{(n)}\hat{y}^{(n)}<1$$
 minimize $-y^{(n)}(w^{\top}x^{(n)})+\frac{\lambda}{2}||w||_2^2$ otherwise, do nothing

Example: linearly separable

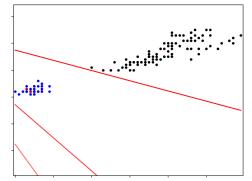


Iris dataset (D=2)

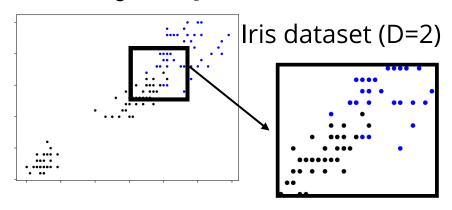
max-margin boundary (using small lambda $~\lambda=10^{-8}~$)



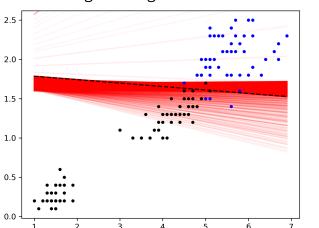
compare to Perceptron's decision boundary



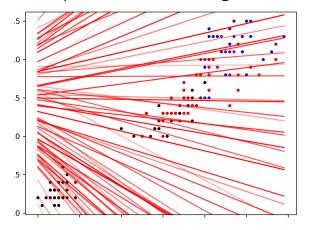
Example: not linearly separable



soft margins using small lambda $\,\lambda=10^{-8}$



Perceptron does not converge



SVM vs. logistic regression

recall: **logistic regression** simplified cost for $y \in \{0,1\}$

$$J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-z^{(n)}}
ight) + (1 - y^{(n)}) \log \left(1 + e^{z^{(n)}}
ight) \quad ext{ where } \ z^{(n)} = w^ op x^{(n)}$$
 includes the bias

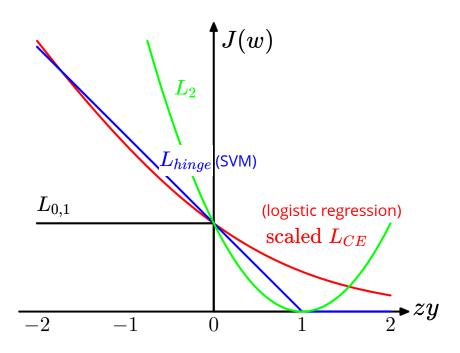
for $y \in \{-1, +1\}$ we can write this as

$$J(w) = \sum_{n=1}^N \log\left(1 + e^{-y^{(n)}z^{(n)}}
ight) + rac{\lambda}{2}||w||_2^2$$
 also added L2 regularization

compare to **SVM cost** for $y \in \{-1, +1\}$

$$J(w) = \sum_n \max(0, 1 - y^{(n)}(z^{(n)})) + \frac{\lambda}{2} ||w||_2^2$$

they both try to approximate 0-1 loss (accuracy)



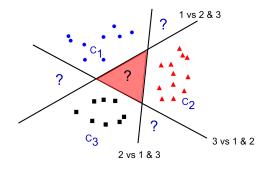
Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:

train C different 1-vs-(C-1) classifiers $z_c(x) = w_c^ op x$



test time:

choose the class with the highest score

$$z^* = rg \max_c z_c(x)$$

problems:

class imbalance not clear what it means to compare $\,z_c(x)\,$ values, trained on different tasks

Multiclass classification

can we use multiple binary classifiders?

one versus one

training:

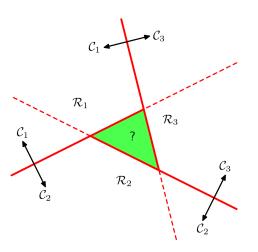
train $\frac{C(C-1)}{2}$ classifiers for each class pair

test time:

choose the class with the highest vote

problems:

computationally more demanding for large C ambiguities in the final classification



Summary

- geometry of linear classification
- distance to the decision boundary (margin)
- max-margin classification
- support vectors
- hard vs soft SVM
- relation to perceptron
- hinge loss and its relation to logistic regression
- some ideas for max-margin multi-class classification