Applied Machine Learning

Gradient Descent Methods

Reihaneh Rabbany

COMP 551 (winter 2022) 1

Learning objectives

Basic idea of

- gradient descent
- stochastic gradient descent
- method of momentum
- using an adaptive learning rate
- sub-gradient

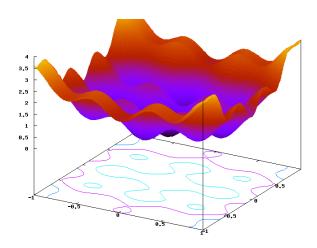
Application to

• linear regression and classification

Optimization in ML

inference and learning of a model often involves optimization: optimization is a huge field

bold: the setting considered in this class



- discrete (combinatorial) vs **continuous variables**
- constrained vs **unconstrained**
- for continuous optimization in ML:
 - convex vs non-convex
 - Iooking for Iocal vs global optima?
 - analytic gradient?
 - analytic Hessian?
 - stochastic vs batch
 - smooth vs non-smooth

Gradient Recall

for a multivariate function $J(w_0,w_1)$ partial derivatives instead of derivative

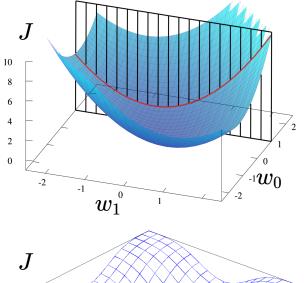
= derivative when other vars. are fixed

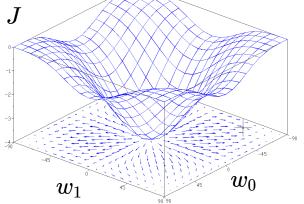
$$rac{\partial}{\partial w_1} J(w_0,w_1) riangleq \lim_{\epsilon o 0} rac{J(w_0,w_1+\epsilon) - J(w_0,w_1)}{\epsilon}$$

we can estimate this numerically if needed (use small epsilon in the formula above)

gradient: vector of all partial derivatives

$$abla J(w) = [rac{\partial}{\partial w_1} J(w), \cdots rac{\partial}{\partial w_D} J(w)]^T$$



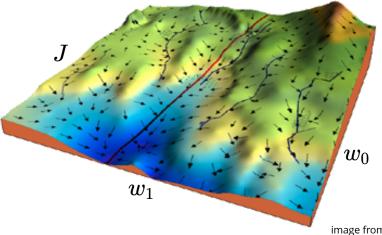


Gradient descent

an iterative algorithm for optimization

- starts from some $w^{\{0\}}$ new notation!
- update using gradient $w^{\{t+1\}} \leftarrow w^{\{t\}} \alpha \nabla J(w^{\{t\}})$ steepest descent direction

converges to a local minima



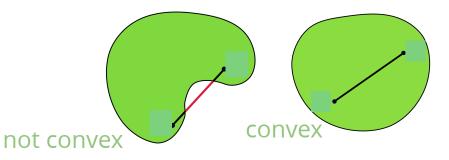
cost function (for maximization : objective function)

$$abla J(w) = [rac{\partial}{\partial w_1} J(w), \cdots rac{\partial}{\partial w_D} J(w)]^T$$

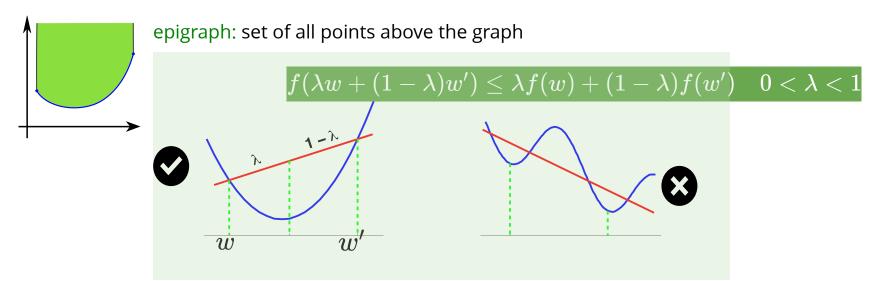
learning rate

Convex function

a **convex** subset of \mathbb{R}^N intersects any line in at most one line segment



a **convex function** is a function for which the *epigraph* is a **convex set**

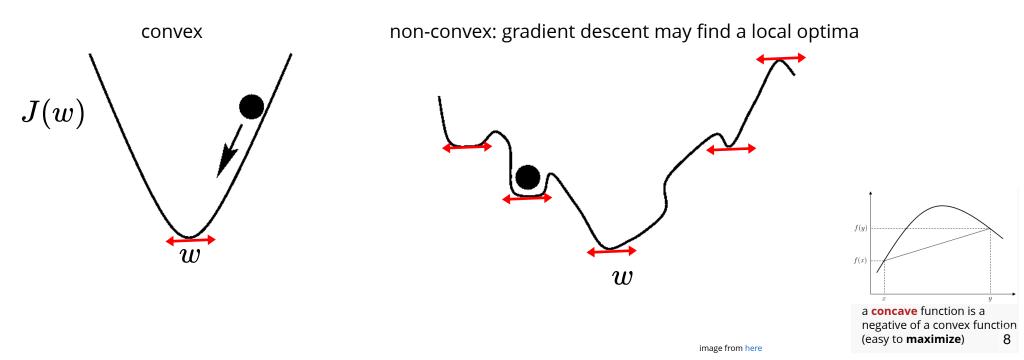


Minimum of a convex function

Convex functions are easier to minimize:

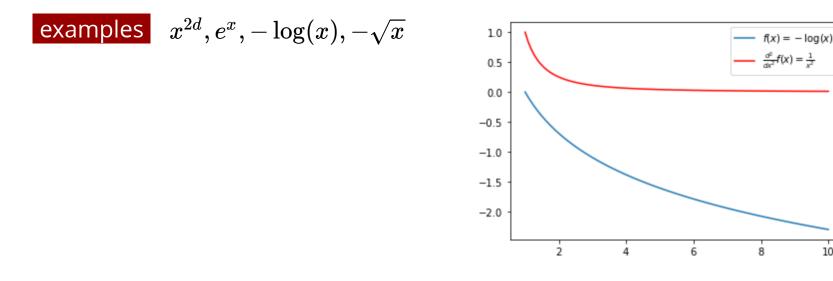
- critical points are global minimum
- gradient descent can find it

$$w^{\{t+1\}} \leftarrow w^{\{t\}} - lpha
abla J(w^{\{t\}})$$

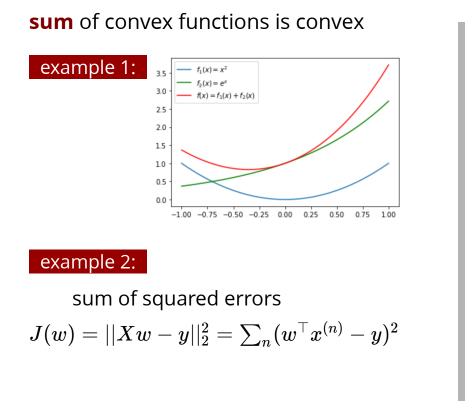


a constant function is convex f(x) = ca linear function is convex $f(x) = w^{\top}x$

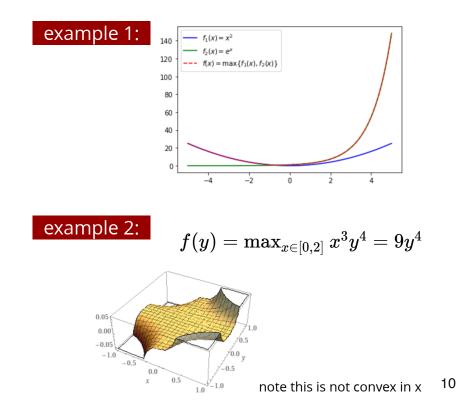
convex if second derivative is positive everywhere $\frac{d^2}{r^2}f \ge 0$ $\forall x$

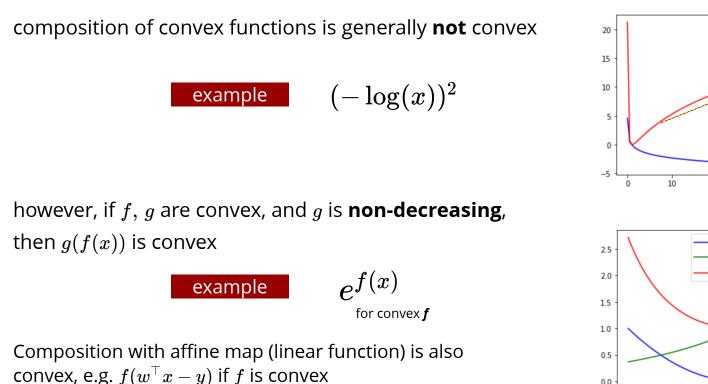


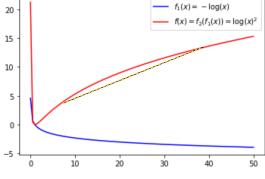
10

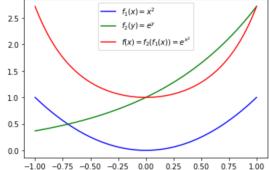


maximum of convex functions is convex









is the logistic regression cost function convex in model parameters (w)?

$$J(w) = \sum_{n=1}^{N} y^{(n)} \log \left(1 + e^{-w^{ op}x}\right) + (1 - y^{(n)}) \log \left(1 + e^{w^{ op}x}\right)$$

same argument checking second derivative $rac{\partial^2}{\partial z^2} \log(1 + e^z) = rac{e^{-z}}{(1 + e^{-z})^2} \ge 0$

sum of convex functions

Gradient for linear and logistic regression

in both cases:
$$abla J(w) = \sum_n x^{(n)} (\hat{y}^{(n)} - y^{(n)}) = X_{D imes N}^ op (\hat{y} - y)_{N imes 1}$$

linear regression: $\hat{n} = m^{ op} r$ logistic regression:

$$y = w \cdot w$$

$$\hat{y} = \sigma(w^ op x)$$

def gradient(x, y, w): $N_{D} = x.shape$

return grad

3

5

yh = logistic(np.dot(x, w))

grad = np.dot(x.T, yh - y) / N

time complexity: $\mathcal{O}(ND)$

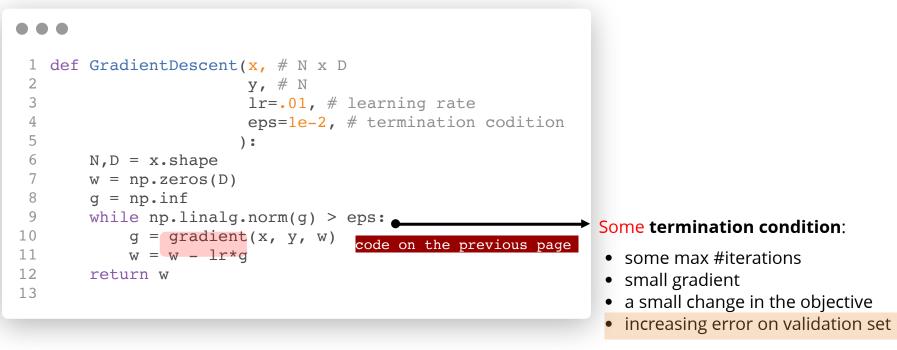
(two matrix multiplications)

compared to the direct solution for linear regression: $\,{\cal O}(ND^2+D^3)$ gradient descent can be much faster for large D

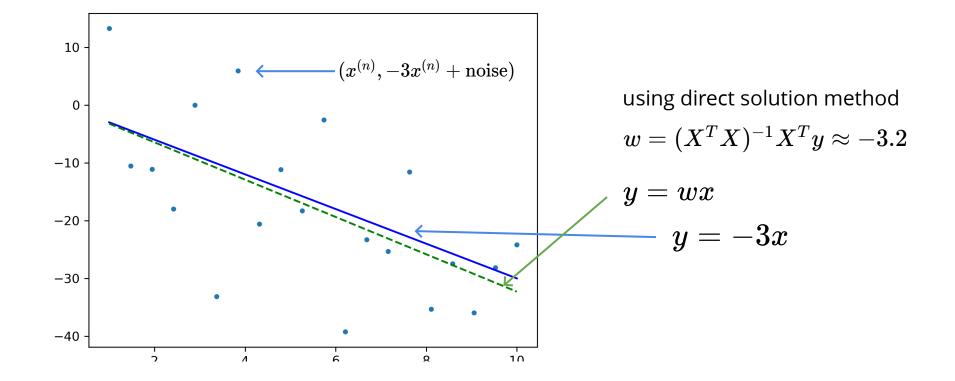
recal

Gradient Descent

implementing gradient descent is easy!

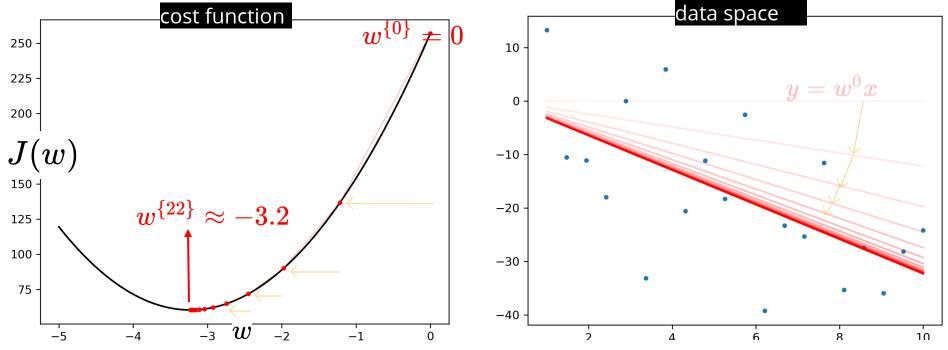


example GD for linear regression



example GD for linear regression

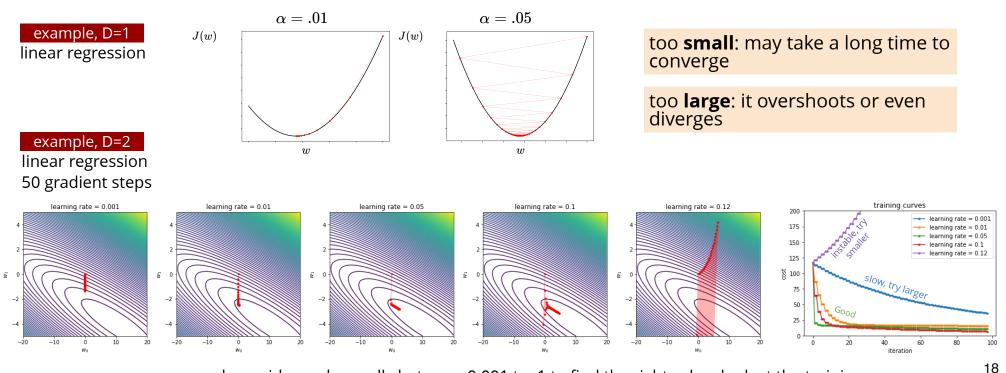
After 22 steps $w^{\{t+1\}} \leftarrow w^{\{t\}} - .01
abla J(w^{\{t\}})$



17

Learning rate α

Learning rate has a significant effect on GD



do a grid search usually between 0.001 to .1 to find the right value, look at the training curves

Stochastic Gradient Descent

we can write the cost function as an average over instances

 $J(w) = rac{1}{N} \sum_{n=1}^{N} J_n(w)$ cost for a single data-point *e.g. for linear regression*

$$J_n(w) = rac{1}{2} (w^T x^{(n)} - y^{(n)})^2$$

the same is true for the partial derivatives

$$rac{\partial}{\partial w_j}J(w) = rac{1}{N}\sum_{n=1}^N rac{\partial}{\partial w_j}J_n(w)$$

therefore $abla J(w) = \mathbb{E}_{\mathcal{D}}[
abla J_n(w)]$

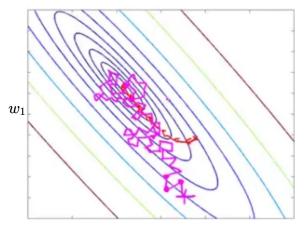
Stochastic Gradient Descent

Idea: use stochastic approximations $\nabla J_n(w)$ in gradient descent

stochastic gradient update

 $w \leftarrow w - \alpha \nabla J_{\mathbf{n}}(w)$

the steps are "on average" in the right direction



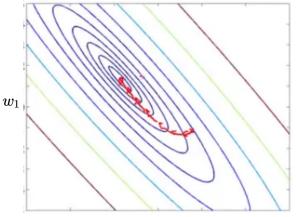
each step is using gradient of a different cost, $J_n(w)$

each update is (1/N) of the cost of batch gradient

e.g., for linear regression $\mathcal{O}(D)$ $abla J_n(w) = x^{(n)}(w^ op x^{(n)} - y^{(n)})$ batch gradient update

 $w \leftarrow w - lpha
abla J(w)$

with small learning rate: guaranteed improvement at each step



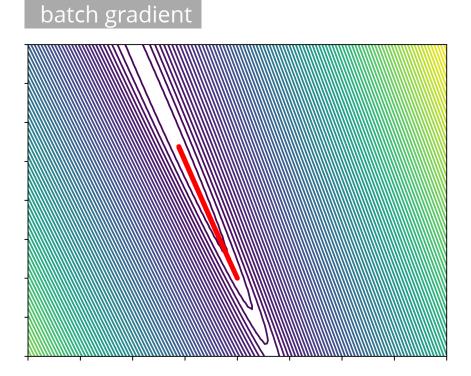
 w_0

contour plot of the cost function

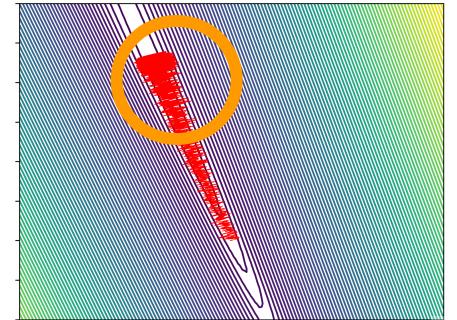
21

SGD for logistic regression example

logistic regression for Iris dataset (D=2 , $\, lpha = .1$)



stochastic gradient



Convergence of SGD

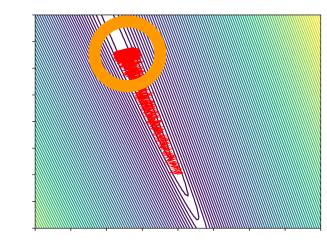
stochastic gradients are not zero even at the optimum w how to guarantee convergence?

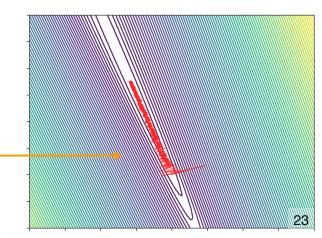
idea: schedule to have a smaller learning rate over time

Robbins Monro

the sequence we use should satisfy: $\sum_{t=0}^{\infty} \alpha^{\{t\}} = \infty$ & otherwise for large $||w^{\{0\}} - w^*||$ we can't reach the minimum the steps should go to zero $\sum_{t=0}^{\infty} (\alpha^{\{t\}})^2 < \infty$

example
$$lpha^{\{t\}}=rac{10}{t}, lpha^{\{t\}}=t^{-.51}$$
 .



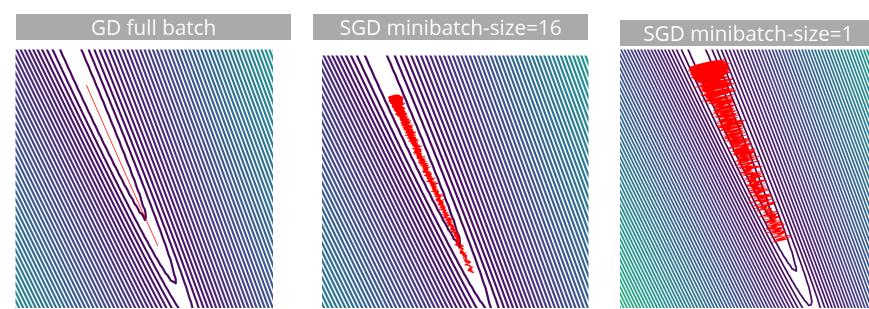


Minibatch SGD

use a minibatch to produce gradient estimates

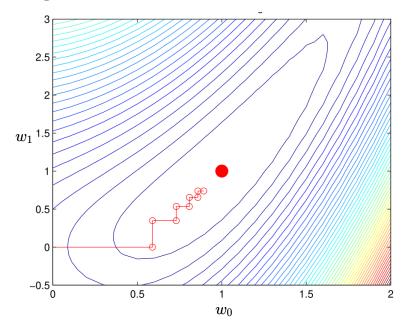
$$abla J_{\mathbb{B}} = \sum_{n \in \mathbb{B}}
abla J_n(w)$$

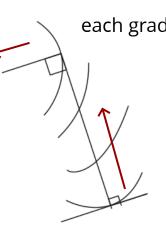
 $\mathbb{B} \subseteq \{1, \dots, N\}$ a subset of the dataset



Oscillations

gradient descent can oscillate a lot!





each gradient step is prependicular to isocontours

in SGD this is worsened due to *noisy* gradient estimate

Momentum

to help with oscillations:

- use a **running average** of gradients
- more recent gradients should have higher weights

 $egin{aligned} &\Delta w^{\{t\}} \leftarrow eta \Delta w^{\{t-1\}} + (1-eta)
abla J_{\mathbb{B}}(w^{\{t-1\}}) \ & \mid \ & w^{\{t\}} \leftarrow w^{\{t-1\}} - lpha \Delta w^{\{t\}} & \mid \ & \text{momentum of 0 reduces to SGD} \end{aligned}$ weight for the **most recent** gradient $(1 - \beta)$ weight for the oldest gradient $(1 - \beta)\beta^{T-1}$ common value > .9

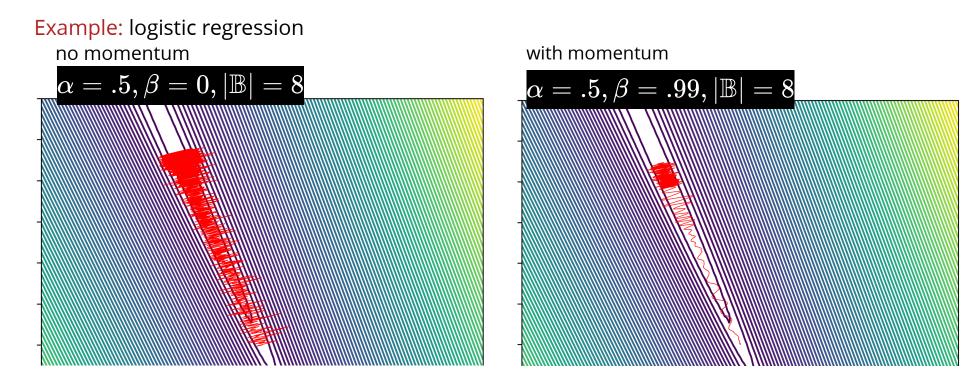
= 'I

is effectively an exponential moving average

$$\Delta w^{\{T\}} = \sum_{t=1}^T eta^{T-t} (1-eta)
abla J_{\mathbb{B}}(w^{\{t\}})$$

there are other variations of momentum with similar idea

Momentum



see the beautiful demo at Distill https://distill.pub/2017/momentum/

Adagrad (Adaptive gradient)

use different learning rate for each parameter w_d also make the learning rate **adaptive**

$$S_d^{\{t\}} \leftarrow S_d^{\{t-1\}} + rac{\partial}{\partial w_d} J(w^{\{t-1\}})^2$$

sum of squares of derivatives over all iterations so far (for individual parameter)

$$w_d^{\{t\}} \leftarrow w_d^{\{t-1\}} - rac{lpha}{\sqrt{S_d^{\{t-1\}} + \epsilon}} rac{\partial}{\partial w_d} J(w^{\{t-1\}})$$

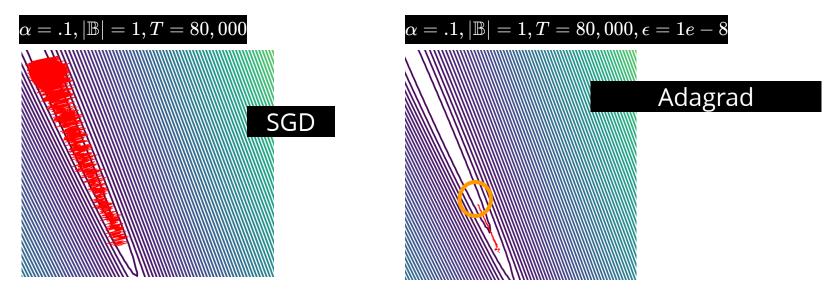
the learning rate is adapted to previous updates $\boldsymbol{\epsilon}$ is to avoid numerical issues

useful when parameters are updated at different rates

(e.g., sparse data when some features are often zero when using SGD)

Adagrad (Adaptive gradient)

different learning rate for each parameter $\,w_d\,$ make the learning rate adaptive



problem: the learning rate goes to zero too quickly

RMSprop (Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad

• use exponential moving average instead of sum (similar to momentum)

instead of Adagrad: $S_d^{\{t\}} \leftarrow S_d^{\{t-1\}} + rac{\partial}{\partial w_d} J(w^{\{t-1\}})^2$

$$egin{aligned} S^{\{t\}} &\leftarrow \gamma S^{\{t-1\}} + (1-\gamma)
abla J(w^{\{t-1\}})^2 \ w^{\{t\}} &\leftarrow w_{\{t-1\}} - rac{lpha}{\sqrt{S^{\{t-1\}} + \epsilon}}
abla J(w^{\{t-1\}}) \end{aligned}$$
i

identical to Adagrad

note that $S^{\{t\}}$ here is a vector and with the square root is element-wise

Adam (Adaptive Moment Estimation)

two ideas so far:

- 1. use momentum to smooth out the oscillations
- 2. adaptive per-parameter learning rate

Adam combines the two:

both use exponential moving averages

 $\left| \begin{array}{l} M^{\{t\}} \leftarrow \beta_1 M^{\{t-1\}} + (1-\beta_1) \nabla J(w^{\{t-1\}}) & \text{identical to method of momentum} \\ S^{\{t\}} \leftarrow \beta_2 S^{\{t-1\}} + (1-\beta_2) \nabla J(w^{\{t-1\}})^2 & \text{identical to RMSProp} \\ w^{\{t\}} \leftarrow w^{\{t-1\}} - \frac{\alpha}{\sqrt{\hat{S}^{\{t\}}} + \epsilon} \hat{M}^{\{t\}} \end{array} \right|$

since M and S are initialized to be zero, at early stages they are biased towards zero

$$\hat{M}^{\{t\}} \gets rac{M^{\{t\}}}{1-eta_1^t} \qquad \hat{S}^{\{t\}} \gets rac{S^{\{t\}}}{1-eta_2^t}$$

for large time-steps it has no effect for small t, it scales up numerator

In practice

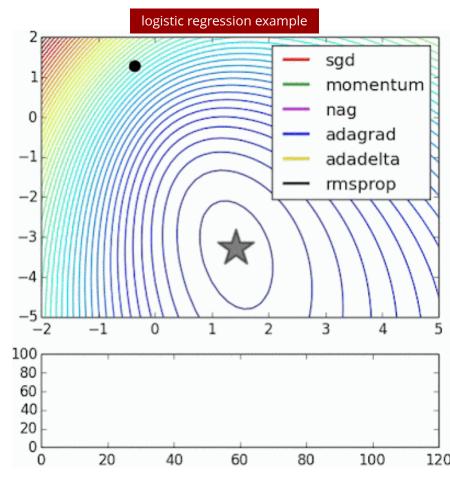
the list of methods is growing ...

they have recommended range of parameters

• *learning rate, momentum etc.* still may need some hyper-parameter tuning

these are all first order methods

- they only need the first derivative
- 2nd order methods can be much more effective, but also much more expensive



Summary

learning: optimizing the model parameters (minimizing a cost function) use **gradient descent** to find local minimum

- easy to implement (esp. using automated differentiation)
- for **convex functions** gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient

- **Robbins Monro** condition: reduce the learning rate to help with the noise better (stochastic) gradient optimization
- **Momentum:** exponential running average to help with the noise
- Adagrad & RMSProp: per parameter adaptive learning rate
- Adam: combining these two ideas