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Learning objectives

e what are linear classifiers
e |ogistic regression

= model
m |oss function

e maximum likelihood view
e multi-class classification



Classification problem

dataset of inputs M) c RD
and discrete targets y(”) c{l,...,C}

binary classification y™ € {0,1}

linear classification:
linear decision boundary w'x +b

how do we find these boundaries?

different approaches give different linear classifiers




Motivation

Logistic Regression is the most
commonly reported data science
method used in practice

from 2020 Kaggle's survey on the state of
Machine Learning and Data Science,

you can read the full version here

METHODS AND ALGORITHMS USAGE

Linear or Logistic
Regression

Decision Trees or
Random Forests

Gradient Boosting
Machines (xgboost,
lightgbm, etc.)

Convolutional Neural
Networks

Bayesian Approaches

Recurrent Neural
Networks

Neural Networks
(MLPs, etc.)

Transformer Networks
(BERT, gpt-3, etc.)

Generative Adversial
Networks

Evolutionary
Approaches
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None
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Linear regression for classification?

adapting linear regression to do classification?
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Linear regression y € [0, 1] Logistic regression y € {0,1}

A linear classifier!



Linear regression for classification?
adapting linear regression to do classification?

Use 1 and 0 as the
target value directly y € {0,1}
apply linear regression

Decision boundry

f(z) = wo + wiz

Using L2 loss: 1
w* = arg min,, %ZnNzl(me(”) — ()2 ol
Y
517
How to get a binary output? .
5(2)
 Threshold ¥ = I(f(z) > 0.5) !
* Interpret output as v

probability 0




Linear regression for classification?

adapting linear regression to do classification?

more thanoneclass? y € {0,1,...,C}

fit a linear model to each class: w? = argmin,, £ 3> (wlz™ — I(y™ = ¢))?

Use 1 and O as the target value directly
apply linear regression, only one class
maps to one, all other to zero

I(yW

How to get the output class?
§" = arg max, f.(z) = arg max. wlz(




Linear regression for classification?

adapting linear regression to do classification?

more thanoneclass? y € {0,1,...,C}
fit a linear model to each class: w? = argmin,, 1 3> (wlz™ — I(y™ = ¢))?
Use 1 and 0 as the target value directly
apply linear regression, only one class PP A I I o T
maps to one, all other to zero fﬁ > W3 X
3,333
05 F--------q=5--- CaREEEEEEE

How to get the output class?
§") = argmax, f.(z) = arg max. w:{w(") p

X,
3

. 00 fF------ 1-------
decision boundary between any two classes @ff T
T, _ T L |
W, = ’wc,af; L, . e | Linearly separable

0.0 0.2 0.4 0.6 0.8 1.0 but we can not
£ classify correctly!

(we —wy )Tz =0



Linear regression for classification?

adapting linear regression to do classification?

Use 1 and 0 as the target value directly apply linear regression

Sensitivity to Outliers, which can dominate the L2 0SS (sum of least squares)

EITJENIEMNN A single outlier can dominate the L2 loss

Decision boundary is a
D-1 hyperplane,

e.g. here a constant (x=0.348) y=05 o

Fitted regression model is a D

dimentional hyperplane, here a line

!
! !
Y = 0348 e ‘ o

no outlier €z one outlier at x10 Z one outlier at x100
not visible in the plot! not visible in the plot!



Linear regression for classification?

adapting linear regression to do classification?

Use 1 and 0 as the target value directly apply linear regression 3
y €{0,1}

With L2 loss, correct
prediction can have 1
higher loss than the

incorrect one!
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Linear regression for classification?

adapting linear regression to do classification?

Use 1 and 0 as the target value directly apply linear regression

With L2 loss, correct prediction can have higher loss than the incorrect one!

Example: P&y T ., T
| wTz = w Tz

~incorrectly classified - correctly classified
B 2 O%. -» > O

S | . (wy — wo)Ta: =0

so one weight w xr > O = y = ]_

vector is enough

higher loss than the

o) wlz = 100, y(") =1 (100 — 1)? = 99? correct prediction has
Te) = —2,y(") =1 (—2 — 1)2 =9 incorrect onel!



Logistic function

ldea: apply a squashing function to w'x — O(wTIB)
desirable property of 0 : R — R

all w'z > 0 are squashed close together
all w'z < 0 are squashed together

|OgiStiC fu nCtion has these properties

1+
r the decision boundary is
a(wT:I:) = 1 0.5 1

IS wzrz=0&aow' ) =3

still a linear decision boundary

T 14



Logistic regression: model

fule) = 0w 2) = 2

logistic function
squashing function 2 logit
activation function

note the linear decision boundary

Generally, a(’wT:c) has a
linear decision boundary
for any monotonically
increasing o : R —

+e v

1 1 / 10 -10 x
05 / 05 . X 2
W=(-2,-1) R o
10 — 10 -10 == — 10
10 -10 x 10 -10 x -
05 X > x1 W1
o W=(2,-2)
-10 10
° 10 10 5 1
-UX v
X 2 0.5}
Ee e —
_18‘\/10
0 o
x 10 -10 X2

classifiers o(w;z; + wyzs) for different weights: w = [wq, ws] 5



Logistic regression: model

recall the way we included a bias parameter &£ — [17 331]

the input feature is generated uniformly in [-5,5]
for all the values less than 2 we have y=1 and y=0 otherwise

a good fit to this data is the one shown (green)

fule) =o(w'z) = 1

in the model shown w ~ [9.1, —4.5]
thatis g = o(—4.5z1 +9.1)

what is our model's decision boundary?

10 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

example

................................... « dataset
predictions
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Logistic regression: the loss

to find a good model, we need to define the cost (loss) function
the best model is the one with the lowest cost
cost is the some of loss values for individual points

zero-one loss
misclassification error

LO/l(.@a y) = Iy # 9)

e not a continuous function (in w)
e hard to optimize

L2 loss
least squared error

squashing resolves some problems and
loss is continuous but

e hard to optimize (non-convex in w)

17



Logistic regression: the loss

use the cross-entropy loss

Log(9,y) = —ylog(g) — (1 — y) log(1 — §)

e itis convexinw @
e probabilistic interpretation (soon!)

examples

correctly classified @ Lep(y = 1,9 = .9) = —log(.9) ~ 0.1 smallerthan Lce(y =1,9 =.5)

— log(.5) = 0.69

incorrectly classified Q) Lop(y = 0,9 = .9) = —log(.1) =~ 2.3 larger than Leg(y=0,9 =.5) = —log(.5) = 0.69 5



Cost function

we need to optimize the cost wrt. parameters

first: simplify  Loe(y,9) = —ylog(y) — (1 —y)log(1l — )
g=o(w'z)=—

1+€ wl'z

J(w) = XN | —y™ log(o(w z™)) — (1 — y™)log(1l — o (w z™))

1 substitute logistic function

log ( 1 - ) = — log (1 + e—wTa:) substitute logistic function

l+e v ®
1 1 w' x
].Og (]. — 1_|_6me) f— ]_Og (1_|_6me) = — ]_Og (]. + e )

simplified cost  J(w) = 25:1 (™ log (1 + e_wT‘E) + (1 —y™) log (1 + e“’T“f)

20



Cost function implementation

simplified cost:  J(w) =Y, y™ log (1+e7* #) + (1 — y™)log (1 +ev ?)
XX

def cost(w, # D

X, # N x D
y #N
)
= np.dot(x,w) #N x 1

z
J = np.mean( y * np.loglp(np.exp(-z)) + (l-y) * np.loglp(np.exp(z)) )
return J

why not np.log(l + np.exp(-z)) ?

PP for small €, log(l —+ 6) suffers from floating point inaccuracies

In [3]: np.log(l+1le-100)
out[3]: 0.0

In [4]: np.loglp(le-100) — ].Og(]. _|_ 6) — € — L + L .
Out[4]: 1le-100

21



Example: binary classification

classification on Iris flowers dataset: Iris Data (red=setosa,green=versicolor,blue=virginica)

(a classic dataset originally used by Fisher) o o

‘g0
'.' ..l.

Sepal.Length ¢ :.::‘.:::‘2 . . &%?‘ . : .lj.: I:"'::::
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each of C=3 species of Iris flower . © atte K
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Example: binary classification

T —— L

we have two weights associated
Wi

tttttttttttttttttt w

....................




Gradient

X

how did we find the optimal weights?
(in contrast to linear regression, no closed form solution)

NSl 7>

cost: J(w) =Y, 3" log (1+ e *") + (1 —y™)log (1 +e* *")

. . . . o o " (n) efwa(n) (n) n eurTa:(”)
taking partial derivative ;2-J(w) =Y —y™z, ety (1 y(™) e
VJ(w) =3, 2™ (" —y™)
o(w'z™)
compare to gradient for linear regression VJ(w) =) w(n)( _ y(n))

wT:B(”) 24



Probabilistic view

Interpret the prediction as class probability 4 =p,(y=1|2) =oc(w'z)

the log-ratio of class probabilities is linear

~ T
log 13 — log % log — L =w'z
logit function
is the inverse of logistic
so we have a Bernoulli likelihood
p(y™ | 2™;w) = Bernoulli(y™; o(w ' 2™)) = §¥" (1 — g y1-4"

conditional likelihood of the labels given the inputs
(n) .
L(w) = [1,_, py™ | 2™;w) = [[,L, 9™ (1 - gtm)tv”

26



Maximum likelihood & logistic regression

(n)

L(w) = [T, p(y™ | 2®;w) = [T g™Y (1 — gm)L-s"

find w that maximizes [IeJeRIL<=1llgle]ele

w* =max Y, logp,(y™ | z(”;w)
— max,, 271:’:1 y™ log(§™) + (1 — y™)log(1 — §™)

= min,, J(w) the cross entropy cost function!

S0 using cross-entropy loss in logistic regression is maximizing likelihood

we saw a similar interpretation for linear regression (L2 loss maximizes the conditional Gaussian likelihood)

27



Multiclass classification

using this probabilistic view we extend logistic regression to multiclass setting
binary classification: Bernoulli likelihood:

Bernoulli(y | 7) = 9¥(1 — )Y subjectto 4 € [0, 1] {f g Z(l)

using logistic function to ensure this 9 = o(z) = o(w’ z)

C classes: categorical likelihood A 1
Yyr Y=
. AN C A]I(y:c) . . U y=2
Categorical(y | 9) = [1._; Jc subjectto Y G =1 S
yc y==
N 2

achieved using softmax function 29



Softmax

generalization of logistic to > 2 classes:

e logistic: o : R — (0,1) produces a single probability

(1—0(2))

C
e softmax: R~ — AC’ recall: probability simplex p € A, — Zle pe=1
A “c
o = softmax(z). = w—r so ¥.9=1
=1

= probability of the second class is

2

softmax([1,1,2,0]) = [2e+22+1’ SeT 1) 2ot 1) 2e+(122+1]
softmax([10,100, —1]) ~ [0, 1, 0]

if input values are large, softmax becomes similar to argmax

so similar to logistic this is also a squashing function

30



Multiclass classification

C classes: categorical likelihood

. A]I _ . .
Categorical(y | 7) = Hle §e¥=9)  Using softmax to enforce sum-to-one constraint

T
ewc x

Z ! ewc'

-

. = softmax([w; 'z,...,we ' z]). = -

so we have on parameter vector for each class
w1 = [w1,1,w1,2, .- ~’w1,D]

to simplify equations we write 2z, = ’wCT:B

zc

Y. = softmax(|z1,...,2¢])c = S



Likelihood for multiclass classification

C classes: categorical likelihood
Categorical(y | ) = Hcczl §e¥=) Using softmax to enforce sum-to-one constraint

QC — SOftmaX([Z]_, s ooy ZC])C — ﬁ where Ze — ’UJCT{B

zZc
) €°¢

substituting softmax in Categorical likelihood:

likelihood L{w.}) = Hi:le Hcc’:l SOftmaX([ZYL), . Z(C?)])](I:(y(n):c)

w ) 17=0)
. N C ezcn
— anl Hc:l ()
Z ) € d

C

32



One-hot encoding

I(y™ =c)
)
likelihood L({wc})HanHfl< - z<n>>

/
c
o €

ATl ¢({w.}) = SN, 320 I(y™ = ) (2 —log 3, e )

one-hot encoding for labels 3™ — [I(y™ =1),...,I(y™ = O)]

(n) _(n) (n) (n) T

z(”):[zl',z2 veoi20 ], e =w ")

2

using this encoding from now on

lo_like”hood e({,wc}) — ZnNzl (y(n)Tz(n) — lOg Zc’ 6221))

we can also use this encoding for categorical features
2 = (2P =1),...,1z" = )]

33



Implementing the cost function

softmax cross entropy cost function is the negative of the log-likelihood
similar to the binary case

J({we}) = — (2N (™ 2 —log 3, €% )) where z = .

Il naive implementation of log-sum-exp causes over/underflow
prevent this using this one trick!

log) .e* =Z+1log)  e*~

where 2z <— maX,. 2.

34



Optimization

given the training data D = {(z™,y™)},

find the best model parameters {w.}.

by minimizing the cost

J({w}) = -3V (v

need to use gradient descent

VJ(w) = [Bwl J,. 5w1 J,.

(n)
— log ZC, e’ ) where 2. = W,

J]'

°) 8’LUC

T

L

35



Gradient

need to use gradient descent
J({we}) = — Zf;’:l(y(n)Tz(n) —log Y., ez§7)) where Z¢ = We ' T

using chain rule 6,] 3z( n) )

l this looks familiar!
(n)

L

(n)
(n) e ivative of | is sof
_yc _|_ O so the derivative of log-sum-exp is softmax

Zc, e? c

~(n)

yC 36



Discreminative vs. generative classification

naive Bayes logistic regression

learns the joint distribution learns the conditional distribution
p(y,z) = p(y)p(z | y) p(y | ©)

the max-likelihood estimate of prior and likelihood no closed-form solution

has closed-form solution (use numerical optimization)

(using empirical frequencies)

weaker assumptions, since it doesn't model the

makes stronger assumptions distribution of input (x)
usually works better with smaller datasets usually works better with larger datasets
linear decision boundary for Gaussian naive Bayes linear decision boundary

only if the variance is fixed 37



Summary

* |ogistic regression: logistic activation function + cross-entropy loss

= cost function
= probabilistic interpretation

o using maximum likelihood to derive the cost function

Gaussian likelihood L2 loss
Bernoulli likelihood cross-entropy loss

e multi-class classification: softmax + cross-entropy

m cost function
= one-hot encoding
L gradient calculation will use later!)
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