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linear model

evaluation criteria

how to find the best fit

geometric interpretation

maximum likelihood interpretation

Learning objectives
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each instance:

Notation

x ∈(n) RD

vectors are assume to be column vectors x = =

⎣⎢
⎢⎢⎢
⎡x1
x2

⋮
xD
⎦⎥
⎥⎥⎥
⎤

[x ,1 x ,2 …, xD]⊤

a feature
y ∈(n) R

one instance

we assume N instances in the dataset D = {(x , y )}(n) (n
n=1
N

for example,                 is the feature d of instance n

each instance has D features indexed by d
x ∈
d

(n) R
4

recall D = {(x , y )}(n) (n)
n=1
N

R denotes set of real numbers

https://en.wikipedia.org/wiki/Real_number


X =

⎣⎢
⎢⎢⎢⎢
⎡ x(1)⊤
x(2)

⊤

⋮
x(N)

⊤⎦⎥
⎥⎥⎥⎥
⎤

design matrix: concatenate all instances
each row is a datapoint, each column is a feature

=

⎣⎢
⎢⎢⎡ x ,1

(1)

⋮
x ,1
(N)

x ,2
(1)

⋮
x ,2
(N)

⋯ ,

⋱
⋯ ,

xD
(1)

⋮
xD
(N)⎦⎥
⎥⎥⎤ ∈ RN×D

one instance

one feature

Notation recall

Y =

⎣⎢
⎢⎢⎢
⎡ y(1)
y(2)

⋮
y(N)⎦

⎥⎥⎥⎥
⎤

D = {(x , y )}(n) (n)
n=1
N

Example:
Micro array data (X), contains
gene expression levels
labels (y) can be {cancer/no
cancer classification} label for
each patient, or how fast it is
growing (regression)

gene (d)

patient (n) ∈ RN×D

∈ RN×1

Example:
instances: 5 documents
features: 7 words 

5



Regression:  examples

Age-estimating.
input: face
output: age

image from Microsoft
age estimator here

instead of is it cancer? yes, no

How fast is it growing? 1.5

Image from Marks et al. link

Protein folding.
input: sequences
output: 3D structure

Colourization. 
input: gray scale image
output: colour image

Image from Zhang et al. link
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https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://techxplore.com/news/2015-05-microsoft-age-estimate-tool-unleashed-real-time.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233603/
https://arxiv.org/abs/1603.08511


Method of least squares was invented by Legendre and Gauss (1800's)
Gauss used it to predict the future location of Ceres (largest asteroid in the asteroid belt) 

Origin of Regression

ocean navigation  
image from wiki history of navigation

Legendre

Gauss

Pearson

used it

published it

named it regression

find more  here
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https://priceonomics.com/the-discovery-of-statistical-regression/


Linear model of regression

f (x) =w w +0 w x +1 1 …+ w xD D

f :w R →D Rassuming a scalar output
will generalize to a vector later

bias or intercept

model parameters or weights
[w ,w ,…w ]0 1 D
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f (x) =w w +0 w x1 1

11

y

0

1

x

.9

.5

1.51.2.3

D = 1

model parameters or weights
  [w ,w ]0 1

bias or interceptf (0) :w

forms a line in 1 dimension
 

Linear model of regression: example



Linear model of regression

f (x) =w w +0 w x +1 1 …+ w xD D

bias or intercept

model parameters or weights

concatenate a 1 to x x = [1,x ,… ,x ]1 D
⊤

f (x) =w w x⊤

simplification

w = [w ,w ,… ,w ]0 1 D
⊤
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objective: find parameters to fit the data

f (x) =w w xT

Linear regression: Objective

model:

y

0 x

f [0,1
]

f [0.2,.
9]

f [−
0.2
,1.
1]

w = [w ,w ]0 1

Which line is better?

example D = 1
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objective: find parameters to fit the data

Linear regression: Objective

15

y

0 x

f [0.2,.9
]

(x , y )(1) (1)

x(1)

 residual: y −(1) f (x )w
(1)

y −(1) ŷ(1)
1y =(1)true:

.5predicted: =ŷ(1) f(x ) =(1)



objective: find parameters to fit the data

Linear regression: Objective
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y

0 x

(x , y )(1) (1)

x(1)

y(1)

ŷ(1)

y −(1) ŷ(1)

(x , y )(2) (2)

how to sum all
residuals?

x(2)

y −(2) ŷ(2)

y(2)

ŷ(2)

L(y, ) ≜ŷ (y − )ŷ 2

square error loss
(a.k.a. L2 loss)



L(y, ) ≜ŷ (y −2
1 )ŷ 2square error loss (a.k.a. L2 loss)

for a single instance (a function of labels)

Linear regression: cost function

objective: find parameters to fit the data

f (x ) ≈w
(n) y(n) x , y ∀n(n) (n)

minimize a measure of difference between =ŷ(n) f (x )w
(n) and y(n)

J(w) = (y −2
1 ∑

n=1
N (n) w x )⊤ (n)

2
sum of squared errors cost function

for future convenience

for the whole dataset
versus

w =∗ argmin J(w)w
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Linear Least Squares

x = [x ]1
w0
∗

f (x) =w∗ w +0
∗ w x1

∗

18

y

w =∗ argmin (y −w ∑n 2
1 (n) w x )T (n)

2

solution:

Example (D = 1) +bias (D=2)!



w =∗ argmin (y −w ∑n
(n) w x )T (n)

2

Example (D=2)

Linear Least Squares

y

x1

w0
∗

f (x) =w∗ w +0
∗ w x +1

∗
1 w x2

∗
2

x2

+bias (D=3)!
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Simple case: D = 1 (no intercept)

f (x) =w wx
both scalar

J(w) = (y −2
1 ∑n

(n) wx )(n) 2cost function

model: J(w)

w

w =∗
x∑n
(n)2

x y∑n
(n) (n)

setting the derivative to zero

=dw
dJ x (wx −∑n

(n) (n) y )(n)derivative

global minimum because the cost function is smooth and convex
more on convexity layer

Minimizing the cost
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w1

Minimizing the cost

the cost function is a
smooth function of w
find minimum by setting
partial derivatives to zero

J

w0

w =0 4,w =1 −4

4 −
4x

w =0 3,w =1 −3

3 −
3x

D = 1 (with intercept)

f (x) =w w +0 w x1model:

cost: a multivariate function J(w ,w )0 1
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for a multivariate function J(w ,w )0 1

partial derivatives instead of derivative

J(w ,w ) ≜∂w0
∂

0 1 limϵ→0 ϵ

J(w +ϵ,w )−J(w ,w )0 1 0 1

critical point: all partial derivatives are zero

w0
w1

J

= derivative when other vars. are fixed

gradient: vector of all partial derivatives

∇J(w) = [ J(w),⋯ J(w)]∂w1
∂

∂wD

∂ ⊤

w1w0

J

Minimizing the cost
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 for general case (any D)

w0
w1

J(w)

setting J(w) =∂wd

∂ 0

cost is a smooth and convex function of w

(y −∂wd

∂ ∑n 2
1 (n) f (x )) =w

(n) 2 0

using chain rule: =∂wd

∂J
dfw
dJ

∂wd

∂fw

(w x −∑n
⊤ (n) y )x =(n)

d
(n) 0 ∀d ∈ {1,… ,D}we get

Minimizing the cost

find the critical point by

D equations with D unknowns 24



Linear regression: Matrix form

instead of =ŷ(n) w x⊤ (n)
1 ×D D × 1∈ R

use design matrix to write =ŷ Xw
N ×DN × 1 D × 1

Linear least squares argmin ∣∣y −w 2
1 Xw∣∣ =2

2 (y −2
1 Xw) (y −⊤ Xw)

squared L2 norm of the residual vector

Note: D is in fact dimensions of the
input +1 due to the simplification
and adding the bias/intercept term

⎣⎢
⎢⎢⎢
⎢⎢⎡
w(0)

w(1)

w(2)

⋮
w(D)⎦

⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎡11
1

x ,1
(1)

⋮
x ,1
(N)

x ,2
(1)

⋮
x ,2
(N)

⋯ ,

⋱
⋯ ,

xD
(1)

⋮
xD
(N)⎦⎥
⎥⎥⎤=Ŷ =

⎣⎢
⎢⎢⎢
⎡ ŷ(1)
ŷ(2)

⋮
ŷ(N)⎦⎥

⎥⎥⎥
⎤=ŷ(1) w +0 x w +1

(1)
1 x w +2

(1)
2 ⋯+ x wD

(1)
D
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Linear least squares

J(w) = ∣∣y −2
1 Xw∣∣ =2 (y −2

1 Xw) (y −T Xw)

=∂w
∂J(w) [y y +∂w

∂ T w X Xw −T T 2y Xw]T

=∂w
∂J(w) 0 + 2X Xw −T 2X y =T 2X (Xw −T y)

Minimizing the cost: Matrix form

=∂w
∂Xw XT

=∂w
∂w XwT

2XwUsing matrix differentiation

y Xw =T w X yT T

27

https://en.wikipedia.org/wiki/Matrix_calculus


Closed form solution

(y −∑n
(n) w x )x =⊤ (n)

d

(n) 0 ∀d

X (y −⊤ Xw) = 0 matrix form (using the design matrix)

N × 1D ×N

each row enforces one of D equations

Normal equation: because for optimal w, the residual

vector is normal to column space of the design matrix

y ∈ RN

x1

x2

y −Xw

2nd column of
the design matrix

29

similar to non-matrix form: optimal weights w* satisfy

X Xw =⊤ X y⊤ system of D linear equations (               )Aw = b
ŷ

D equations with D unknowns

=ŷ Xw = X(X X) X y⊤ −1 ⊤

projection matrix into column space of X

w =∗ (X X) X y⊤ −1 ⊤

D ×D D ×N N × 1

pseudo-inverse of X

closed form solution

Geometric
interpretation



Uniqueness of the solution

we can get a closed form solution! w =∗ (X X) X y⊤ −1 ⊤

or when the  matrix is not invertibleX X⊤

this matrix is not invertible when some of eigenvalues are zero!

that is, if features are completely correlated

... or more generally if features are not linearly independent

examples having a binary feature        as well as its negation                          x1 x =2 (1 − x )1

unless               D ≥ N
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Time complexity

w =∗ (X X) X y⊤ −1 ⊤

O(D )3 matrix inversion

O(ND) D elements, each using N ops.

O(D N)2 D x D elements, each requiring N multiplications

total complexity for is                           which becomes  for O(ND )2 N > DO(ND +2 D )3

in practice we don't directly use matrix inversion (unstable)

D ×D

31

D ×N N × 1

however, other more stable solutions (e.g., Gaussian elimination) have similar complexity



Multiple targets

instead of Y ∈ RN×D′y ∈ RN we have

W =∗ (X X) X Y⊤ −1 ⊤

D ×D D ×N N ×D′

=Ŷ XW

N ×D D ×D′

a different weight vectors for each target

each column of Y is associated with a column of W

N ×D′
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Fitting non-linear data

so far we learned a linear function f =w w x∑d d d

sometimes this may be too simplistic

idea create new more useful features out of initial set of given features

e.g., x ,x x , log(x),1
2

1 2 how about                    ?x +1 2x3
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Nonlinear basis functions

so far we learned a linear function f =w w x∑d d d

let's denote the set of all features by

(Φ Φ)w =⊤ ∗ Φ y⊤solution simply becomes

with Φ

Φ =

⎣⎢
⎢⎢⎢
⎡ ϕ (x ),1

(1)

ϕ (x ),1
(2)

⋮
ϕ (x ),1

(N)

ϕ (x ),2
(1)

ϕ (x ),2
(2)

⋮
ϕ (x ),2

(N)

⋯ ,
⋯ ,

⋱
⋯ ,

ϕ (x )D
(1)

ϕ (x )D
(2)

⋮
ϕ (x )D

(N) ⎦⎥
⎥⎥⎥
⎤

replacing X
a (nonlinear) feature

one instance

ϕ (x)∀dd

the problem of linear regression doesn't change f =w w ϕ (x)∑d d d

ϕ (x)d is the new x
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Nonlinear basis functions

example x ∈ R

polynomial bases

ϕ (x) =k xk

Gaussian bases

ϕ (x) =k e− s2
(x−μ )k

2

Sigmoid bases

ϕ (x) =k
1+e− s

x−μk
1

original input is scalar

36



Sigmoid bases

ϕ (x) =k
1+e− s

x−μk
1

we are using a fixed standard deviation of s=1

=ŷ(n) w +0 w ϕ (x)∑k k k

y

x

y

x

ϕ (x) =k e− s2
(x−μ )k

2

we are using a fixed standard deviation of s=1

Gaussian bases

the green curve (our fit)
is the sum of these
scaled Gaussian bases
plus the intercept. Each
basis is scaled by the
corresponding weight

37

Linear regression with nonlinear bases: example



given the datasetidea

image from here

w x⊤y

x

  
Probailistic interpretation

D = {(x , y ),… , (x , y )}(1) (1) (N) (N)

learn a probabilistic model p(y∣x;w)

p (y ∣w x) = N (y ∣ w x,σ ) =⊤ 2 e
2πσ2
1 −

2σ2
(y−w x)⊤ 2

consider                   with the following formp(y∣x;w)

assume a fixed variance, say σ =2 1

39

Q: how to fit the model?
A: maximize the conditional likelihood!

http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/


cond. probability p(y ∣ x;w) = N (y ∣ w x,σ ) =⊤ 2 e
2πσ2
1 −

2σ2
(y−w x)⊤ 2

w xTy

x

log likelihood ℓ(w) = − (y −∑n 2σ2
1 (n) w x ) +⊤ (n) 2 constants

L(w) = p(y ∣∏n=1
N (n) x ;w)(n) likelihood

max-likelihood params. w =∗ argmax ℓ(w) =w argmin (y −w 2
1 ∑n

(n) w x )⊤ (n) 2

linear least squares!

40

  
Maximum likelihood & linear regression

whenever we use square loss, we are assuming Gaussian noise!
image from here

http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/


Summary

linear regression:

models targets as a linear function of features

fit the model  by minimizing the sum of squared errors

has a direct solution with                        complexity

probabilistic interpretation

we can build more expressive models:

using any number of non-linear features

O(ND +2 D )3
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