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Learning objectives

e the assumption of Naive Bayes classifier

e what does learning and prediction steps involve?
e different likelihood functions

e Bayesian parameter learning in Naive Bayes

e practical considerations



Bayes rule for classification

given

e the prior probability of each class
* likelihood of observations given the class

use Bayes rule for classification

likelihood of input features given the class label
(input features for each label come from a different distribution)

posterioiclass probability i
_ __ plo)p(zle)
ply=c|z)= ()

T don't worry about the evidence
it simply normalizes the posterior class probabilities



Bayes rule for classification

z € {—,+} input:testresults, a single binary feature
y € {yes,no} label: patient has cancer

likelihood: p(+4|yes) = .9 TP rate of the test (90%)

|

__ ple)p(zfc)
ple|z) = p(z)
posterior: p(yes|+) = .08 T Ff rate of the test (5%)

p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .01 x .9+ .99 x .05 = .189



Generative classification

learn the following distributions from the data D = {(z), M), ..., (z®™),y™))}

prior probability of each class

likelihood of data for each class p(z|y = ¢)

use the Bayes rule to get the posterior class probability  p(y = ¢ | z) o p(z|c)

generative classifier because we are learning the joint data distribution  p(z,y) = p(y)p(z|y)

we can generate new data from this joint distribution

in a discriminative classifier we directly learn p(y|z)

more on this in the future



Generative classification

likelihood of input features given the class label
(input features for each label come from a different distribution)

i

_ __ ple)p(zle)
—Ccl|l )=
P(yT ’ ) ()
posterior probability
of a given class 25:1 p(m, C’)

Some generative classifiers:

e Gaussian Discriminant Analysis: the likelihood is multivariate Gaussian
e Naive Bayes: decomposed likelihood e



Naive Bayes model

number of input features

|
assumption about the likelihood p(w]y) = Hd:1 p(wd\y)

when is this assumption correct?
when features are conditionally independent given the label x; 1 T ’ Y

knowing the label, the value of one input feature gives us no information about the other input features

How is the likelihood derived from this independence assumption?

chain rule of probability (true for any distribution)

p(zly) = p(x1|y)p(z2ly, x1)p(zs|y, 1, 22) . .. p(xD|Y, Z1,. .., TD-1)

conditional independence assumption
T1,Z2 give no extra information, so  p(xs3l|y, z1, z2) = p(z3|y) ,s
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Naive Bayes: objective

given the training dataset D = {(z™),yM),..., (™, y))}
a generative classifier maximizes the joint likelihood (or log-likelihood)
L(7,0;D) = [1,,.p p(z™,y™; 7, 0) , 0 are the model parameters

U(r,0) =32, logp(z™, y™; 7, 0)
=3, [logp(y™; )+10gp(w(”)\y‘");9)]
= logp(( ; ) + 32, log p(z" \y ;0)
=> log p(y™; ) + don longp(a:d 1y 6,) e using Naive Bayes assumption here

— 3 logp(y™; 1) + 3, 3 Tog p(a'” [y™; 6,) p(ely) = [Ti: p(ealy)

logp(z|y) = >4 q logp(z4ly)

p(z,y) = p(y)p(z|y)

separate max-likelihood problems for prior and each feature x4 given the label 0



Prior class probabilities

class probabilities prior to looking at the features
for binary classification, class probability is given by Bernoulli p(y;7) = w¥(1 — )

the max-likelihood estimate for Bernoulli

argmaxwz log p(y ) )— N Z y

for multi-class classification, class probability is given by categorical distribution

(y,ﬂ') = Hc 1 7T ]I(y C) — 7'('y note that in this case 71 is a vector

max-likelihood estimate is again given by empirical frequencies

arg max Z log p(y(n) . 7_(_) _ N(y=c¢) frequency of class c in our dataset
II]‘ Te n 9 -
N, N,
st Yeme =1 ™ =[F W

In both cases we learn the prior simply as the class frequencies in the training data

1—

Y
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Naive Bayes: objective

given the training dataset D = {(z™),yM),..., (™, y))}

a generative classifier maximizes the joint likelihood (or log-likelihood)
U(r,0) = 32, logp(z!™,y™); 7, 0)
=32, log p(y™); 7) + log p(z™[y™); 0)
=2, logp(y™; ) + 32, log p(z™ [y™); 0)

:anogp( (n) 3 )"’Z IOngp :Bd ‘y

Next, how to
> Z log p( :1: \y)_maxmlze this part
d d

separate max-likelihood problems for prior and each feature x4 given the label

so far we know how to
maximize this part
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Likelihood terms

likelihood terms p(x4|y; 04)

e encode our assumption about the generative process

o different types of features require different forms of likelihood

Bernoulli for binary features

Categorical for categorical features
Multinomial for "count" features

m Gaussian is one option for continuous feature

e each feature 4 may use a different likelihood form

e separate maximum conditional likelihood estimate for each feature

arg maxg, >0 logp(z!" | y™;6,)
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Bernoulli Naive Bayes

for a binary feature likelihood is Bernoulli

=0;0;) =B i(xq; 0
{ p(za |y ) ernoulli(z4; 611,) one parameter per label

p(xq | y = 1;04) = Bernoulli(zg; 0, 1)

short form: p(zq | y;04) = Bernoulli(zg; 0.,)

max-likelihood estimation is similar to what we saw for the prior

N (y=c,zq4=
HMLE (y r>d 1) number of training instances satisfying this condition
closed form solution of MLE N(y:C)
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Covid-19 classification

each patient has seven binary features z € {0,1}7

we have a dataset of N=1000 patients, where 200 had covid-19

learning:
. _ N@=1) _

learn the prior: 7™ = —F— = .2

for each symptom d: _ N(y=l,24=1)
L Ban = N(y=1)

probability of symptom z; =1given y =
— N(yzo,l‘d:l)

0 Hd,O N(y=0)

prediction:
for a new patient x calculate unnormalized posterior

p‘(y = 0|z) = Bernoulli(0; ) [ [, Bernoulli(z4; 64,)
p(y = 1|z) = Bernoulli(1; 7) [ ], Bernoulli(zg; 64,1)

normalize it p(y = 1|z) =

61,1 02,1

Fever 88% Fatigue 38%
Sore

throat 15%

Mucus
production 33% 7
Dry cough 68%
Shortness
of breath 19%

p(y=1|z)

image credit: Time magazine

p(y=0[z)+p(y=1|z)
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Disease diagnosis

what changes in multi-class setting?

N(y=c)

learn the prior: 75 = <

for each symptom d:

learn the conditional likelihood: 0

probability of symptom z; =1 given y =

how many parameters in our model?

binary classification, binary features 1 + 2D

multi-class classification, binary features C' + C'D

_‘\l
' Headaches

' Symptoms are common Q Symptoms occur o

metimes
O Symptoms are uncommon Symptoms are rare ® Doesnit have these symptoms
Seasonal
Symptom COVID-19 Flu Cold allergies

6 Diarrhea

iz
Z1' Fatigue

‘i’ Fever

000000

(9‘ Itchy or watery eyes

. Loss of smell or taste
; Nausea or vomiting
' Runny / stuffy nose
“ Shortness of breath .
.‘ Sneezing
’ Sore throat O

Source: WHO,CDC

O © i

| )
o0

(®
O

OV NEWS
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Document classification
e.g., spam filtering

=3

is puppy ct pen a this

itisapuppy | 1 1 1 0 0 1 0
# words in our vocabulary itis a kitten 1 1 0 0 0 1 0
each document (email) is one instance z € {0,1} tisacat | 1 | 1 10| 1]0] 1|0
(n) 1i ) thatisadogandthisisapen | 0 1 0 0 1 1 1
x,; ' = 1 ifthe word d appears in document n tisamatix | 7 T 110 To o 11 o
classify the documents based on this bag of words representation
learning:
MLE for the prior (spam frequency in our dataset)
MLE for the likelihood terms (frequency of word (d) in spam/non-spam documents)
prediction:

calculate the posterior

1

image: Feature Engineering for Machine Learning



Document classification

it is puppy cat pen a this label
. _ itisapuppy | 1 1 1 0 0 1 0 1
let's learn the Naive Bayes for the following data o
, i ) itisakitten | 1 1 0 0 1 0 1
the label y=1 if the sentence is about animals
itisacat | 1 1 0 1 0 1 0 1
thatisadogandthisisapen | 0 1 0 0 1 1 1 1
itisamatrix | 1 1 0 0 0 1 0 0
. 4
prior parameter: = 3
y=0 L 10 0 0 1 0
class conditional parameters: Hd,y 9 ! L ! ! ! !
y=1 3 N 1 IR 1
4 4 4 4 4 4 4
d=1 d="17
we get a new sentence: it is a random sentence z=1,1,0,0,0,1,0]
- 4,3 4,303,383 4,3~
Ply=1lz) =g x g xgxgxgxgxixg~=.19 a py = 1z) = =12 ~ 49
~ 111,11 1,11 - T o2+.19 T
p(y:O‘CIJ):gXIXIXTXIXIXIXI:2

image: Feature Engineering for Machine Learning 19



Why Naive Bayes assumption?

Naive Bayes assumption p(z|y) =[], p(z4|y)

what if we did not make this assumption?

consider the spam filtering example:

e D can bevery large
e with the Naive Bayes assumption: learn the frequency of each word (d) in spam/non-spam documents
e without it: learn the frequency of each possible subset of words in spam/non-spam documents

eg., for =11,1,0,0,0,1,0] we need to estimate p(x|y)

it is puppy «cat pen this

d
itisapuppy | 1 1 1 0 0 1 0
itisakitten | 1 1 0 0 0 1 0
e many combinations of words may not appear in even one document iisacat | 111 1olilol a1l o
e we need exponentially more parameters thatisa dogandthisisapen | 0 | 1] 0 | 0 | 1 | 1 | 1
e even for large datasets, this could lead to overfitting tisamatrix 1 1.1 11 o1 olol 11 o

image: Feature Engineering for Machine Learning



Bayesian Naive Bayes

it is fuppy ct pen f a Y this
using MLE in Naive Bayes can lead to overfitting itisapuppy | 1 B 1 B 1 J oo 1o
EIEN let's classify this new sentence: Misakiten | 1 Q1 JOJO0J O QT 0O
itis a cat 1 1 0 1 0 1 0
that dog was my puppy

thatis adog and thisisapen | 0 1 0 0 1 1 1
ply = 1|z) = % % % % % X ...=0 itisamatix | 1 B 1 Jo | o] o f1]o

= 1,00 _

the problem is that the word "is" appears in all instances
max-likelihood estimate 611 =610 =1

we can solve this by being Bayesian in parameter learning:
instead of maintaining a point estimates 7, 84, we maintain distributions p(7),p(0s,) for y e {0,1},d
start from separate prior for each parameter p(m),p(04,)

calculate the likelihood [, p(y™ |r)

update with observed frequencies in the dataset

image: Feature Engineering for Machine Learning



Bayesian Naive Bayes

start from separate prior for each parameter p(r) = Beta(m; ™, 87) p(f4,) = Beta(8;a’, 8%)

calculate the posterior  p(w|D) = Beta(m;a™ + N(y =1),8" + N(y = 0))

p(ed,gju)) - Beta(ed,ﬂ;ae + N(y = g7xd - 1)7ﬁ0 + N(y - g7 Tq = 0))

use posterior predictive for a new instance (x) p(y = 1|z, D) = fg p(y = 1|m)p(w|D) [ 1, p(xal0a1)p(041|D)d6dm

individual posterior predictives 9 = (/. p(y = 1|m)p(x|D)dr) [, <f0d1 p(:cd|9d,1)p(9d,1\D)d0)
for Beta distribution, we simply used the posterior mean (and dropped the integral)

(1—:15,1)
~ _ a"+N(y=1) o’ +N(y=1,z4=1) B°+N (y=1,z4=0)
p(y - llx’D) a”—%—,B”—i—N Hd ( a0+50+N(yd 1) ) ( ao—i—ﬁo—l—N(yd:l) )

compare with our previous prediction (using MLE)

(1—:13d)
l,zy=1 N(y=1,z4=0
By = 1]z, D) = M [, (MycLausl )™ (Nyckn))
22



o o it is puppy cat pen a this
Bayesian Nailve Bayes N
itisapuppy | 1 1 1 0 0 1 0
itisakitten | 1 1 0 0 0 1 0
\ , , , . itisacat | 1 1 0 1 0 1 0
let's classify this new sentence using Laplace smoothing: _ N
this dog was my puppy 0" =" =af =g =1 thatis a dogandthisisapen | 0 1 0 0 1 1 1
itisamatrix | 1 1 0 0 0 1 0
S0 _ 441 o 141 o 041 o 141 o 341, 341, 041 o 141
Ply=1z) = 55 X o5 X 5e X T2 X 1 X 2 X 102 X 03 ~ -00032 y=0 [N ENORS BROR SO SRS B0
1 1 1 1 1 1 1
S0 _ 141 041 041 041 141 , 141 , O+1 041 =1
Py =0lz) = 55 X 13 X 153 X 173 X 172 X 12 X 142 X 152 =~ -00052 Y % % 411 i i % 411
d=1 d=
_ _ .00052 ~
P(y = 0/2) = Fo32+-.00082 ~ -62
note that if D is large we have to calculate the product of many terms numerical problems!

image: Feature Engineering for Machine Learning



Log-Sum-Exp trick

In estimating unnormalized posteriors we could get numerical problems (underflow)

when calculating the posterior for new instances, we work with in the log-domain:

log p(y|x; m,0) = log p(y; ) + >, log p(z4|y; 04)

p(ylz;m,0)

to get the final probabilities we need to normalize P p(ylz;m,0) = SO s (elen 0)
c=1 P\C|T;TT,

we can do this normalization in the log domain as well:

log p(y|a; 7, 0) = log p(y|z; 7,0) —log Yoo, exp(log (c|z; T, 6))

we could run into very large or small numbers inside the exponential
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Log-Sum-Exp trick

we can do this normalization in the log domain as well:
~ C ~
log p(y|z; m,0) = log p(y|a; 7, 60) —log y " exp(log p(c|z; m, 0))

log >, exp a. = log (exp(an)(3_, exp(ac — ao)) = ay +log >, exp(ac —

to make log-sum-exp numerically stable, bring the numbers @, close to zero

for example choose Qo <— MaXc G,

)
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Multinomial likelihood

it is puppy cat pen

what if we wanted to use word frequencies in document classification? '_t I?a pl_Jppy A A A U

itisakitten | 1 1 0 0 0

(n) . , _ itisacat | 1 1o 1|0
Z; " is the number of times word d appears in document n thatisadog andthisisapen | 0 @ SEE O

itisamatrix | 1 1 0 0 0

zq)! D
p(z|y) = Mult(z;6,) = " T2, 05

o Hfl):l q;d! probability of word d appearing 4 time

the max-likelihood estimate is again given by the relative frequency

nwd

HMLE L Z (n)]l(y(n) :c) counts of word d in all documents labelled ¢

d,c R n _
! Zn Zd’ w;,)l[(y(") —C) total word count in all documents labelled ¢



Univariate Gaussian density

Gaussian probability density function (pdf)

(z—p)?
. __ 1 —
N(w, l’l’7 0-2) = W@ 202

two parameters are W, o>

turn out to be the mean and variance

Elz] = p
E[(z — p)?] = o

this is a random variable; we are using the same notation for a random
variable and a particular value of that variable

plx)

0.8

0.7 1

06 1

0.5 A

0.4 1

03 -

0.2 1

0.1 4

0.0 1

Univariate Normal

— u=-3,0=1
u=0,0=1
u=0,0=5

— u=1,0=05

-10.0 -75 -50 =25 0.0 25 5.0 75 10.0
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Univariate Gaussian density

Gaussian probability density function (pdf)

2

(z—p)
. _ 1 —
N(:B,,LL,O‘)— We 20°

given a dataset D = {zV,..., 2N}

maximum likelihood estimate of u, o>
are empirical mean and variance

yMLE % > 2™

N

99.7%

MLE n
o2 — % Zn(w( ) ,U,MLE)2

—— 954%—
«—68.2%—>

34.1% 34.1%

Vv
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Univariate Gaussian density

two reasons why Gaussian is an important dist.

e central limit theorem

12000
let's throw three dice, repeatedly

plot the histogram of the average outcome

10000
8000

looks familiar?

6000

lets use 10 dice

4000
2000 ‘
0 .'|
0

2 4

v

let's replace the dice with uniformly distributed values in [0,1]

the average (and sum) of IID random variables has a Gaussian distribution

justifies use of Gaussian for observations that are mean or sum of some random values

v

7000

6000

5000

4000

3000

2000

1000

3000

2500

2000

1500

1000

500

.i.m

3

‘In.;
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Gaussian Naive Bayes

for continuous features one option is the Gaussian conditional likelihood

_("’”d_“d,y)2
2
p(za | y) = N(zqg; )= \/#76 29dy

corresponds to what we previously called Qd y
)

Maximum likelihood estimates:

empirical mean & variance of feature &4 across instances with label Y

N n n
Hae = ¥ Sones Ty 1™ = ¢)
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Gaussian Naive Bayes

classification on Iris flowers dataset:
e we use categorical class prior (3 classes)

e Gaussian likelihood since the features are continuous (we use D=2 features)

the decision boundary found by Gaussian NB
three means are identified using X

sepal length

note that we have a mean p4,. and variance afl . for each class-feature combination
in the plot each X is showing the combined mean of two features, sepal length and sepal width.

45 4

4.0 1

35 1

304

25 4

204

decision boundaries

L BN ® 00
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[ 1] ) [ 1] .:. ®
® 2
o0 L ] L .._.. [ 1] [ ] o0
[ ] :>< L 1] ® [ ]
- . L ]
[ ] [ ] o]
L ]
L ]
45 50 55 60 65 70 715 80

sepal width
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45

4.0

[¥¥]
v

[¥¥]
(=]

25 1

20 1

L ]
. posterior probabilities

[ 1]
® 0
*e L 1] ® :: .:.. [ 1] .. [ 1]
o-%--o - [
i [ ] L ]
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» ®
[ ] L] @ L3
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Summary

e generative classification:

= |earn the class prior and likelihood
= Bayes rule for conditional class probability

* Naive Bayes
m assumes conditional independence

o e.g., word appearances indep. of each other given document type

= class prior: Bernoulli or Categorical

= |ikelihood: Bernoulli, Gaussian, Multinomial...

= MLE has closed-form, estimated separately for each feature and each label
= Bayesian Naive Bayes helps with overfitting

o with frequent or rare feature values
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