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Admin

e Self-enrolmentin groups is due tonight afterwards anyone left will be assigned a
group, make sure to fill the poll if not already for automatic assignments

® (Correction, If you need to be moved between groups, please send an email and cc
your group members, i.e. whoever will be affected by the change/correction

® Please do not ask for exceptions to group size

e Questions?



Objectives

understand what it means to learn a probabilistic model of the data

e using maximum likelihood principle

e using Bayesian inference
= prior, posterior, posterior predictive
= MAP inference
= Beta-Bernoulli conjugate pairs



Parameter estimation
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a coin's head/tail outcome has a Bernoulli distribtion { é

. o reminder: Bernoulli random _
Bernoulh(w‘@) = 933(1 — 0)(1 z) variable takes values of 0 or 1, p(z|0) = o v
e.g. head/tail in a coin toss 1-60 z=0

this is our probabilistic model of some head/tail IID data D = {0,0,1,1,0,0,1,0,0,1}

Objective: learn the model parameter 0

since we are only interested in the counts, we can also use Binomial distribution

Binomial(N, N;|0) = (J]V\:l)HNh(l — g)N—Nn

|
‘ # heads N, = > ep T

D N
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Maximum likelihood

a coin's head/tail outcome has a Bernoulli distribtion (é
Bernoulli(z|f) = 6% (1 — )1—2)

this is our probabilistic model of some head/tail IID data D = {0,0,1,1,0,0,1,0,0,1}

Objective: learn the model parameter 0 Max-likelihood assignment

Idea: find the parameter @ that maximizes the probability of observing D

likelihood function Bernoulli{f0 0110010 0 1]|6)
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Likelihood L(6;D) = [],.,, Bernoulli(z|) = *(1 — 6)° is a function of §
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Likelihood L(6)
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note that this is not a probability density!
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Maximizing log-likelihood
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likelihood L(6;D) = ][, .p»p(x;0)

Likelihood L(8)
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using product here creates extreme values

for 100 samples in our example, the likelihood shrinks below 1e-30

log-likelihood has the same maximum but it is well-behaved
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Log-Likelihood log(L(8))

-200

((6;D) = log(L(0; D)) = X, p log(p(x; 0))

-250

how do we find the max-likelihood parameter? g* — arg maxy £(0; D)
for some simple models we can get the closed form solution

for complex models we need to use numerical optimization



Maximizing log-likelihood

log-likelihood £(0; D) = log(L(6; D)) = > _.p log(Bernoulli(z; §))

Log-Likelihood log(L(8))

observation: at maximum, the derivative of £(6;D)is zero

-250

idea: set the the derivative to zero and solve for 6

max-likelihood for Bernoulli
55L(0:D) = 55 2 ,cp log (6°(1 — )"
:%Z$xlog0 + (1 — z)log(1l — )

=35 1¢=0

which gives GMLE — 2acp @ is simply the portion of heads in our dataset

D]

what is 6L when D = {0,0,1,1,0,0,1,0,0,1}?
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sepal length

Bayesian approach

ML solution with increasing data

max-likelihood estimate does not reflect our uncertainty: s — Em |
2 con |
e e.g., AMLE — 2for both 1/5 heads and 1000/5000 heads E | ~
g __‘———*—é————‘__'___
® in which case are we more certain of the predicted 6? E« n \‘*_//
L] - p 0
“ E i (.5, 100%) 8338 R, ode
30] o0 * *%e H :on.’::o 0e® M o: /\
LT Ren 9902550 (75,50%) @ @ Ruigne

sepal width

ply=+)=1ply=-) =4

How can we quantify our uncertainty about our prediction?
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Bayesian approach

How can we quantify our uncertainty about our prediction?
capture it using a conditional probability distribution instead of a single best guess

Using the Bayesian inference approach

e we maintain a distribution over parameters p(0)
e after observing D we update this distribution p(6|D)

how to update degree of certainty given data? using Bayes rule

hidden prior likelihood of the data
p(@)p(D ‘ 9) previously denoted by L(6; D)
p(0|D) =

observed

We can get a point estimate by collapsing this posterior
distribution to a single point, i.e. the best guess
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Bayes rule: example reminder

c= {yes, no} patient having cancer?

x € {—,+} observed test results, a single binary feature

likelihood: p(+|yes) = .9 TP rate of the test (90%)

)

_ _ p(z|c=yes)
p(lc=yes | x) =
’ ) p(z) FP rate of the test (5%)
posterior: p(yes|+) = .0177 T T

p(+) = p(yes)p(+]|yes) + p(no)p(+|no) = .001 x .9 + .999 x .05 = .05
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Conjugate Priors

in our coin example, we know the form of likelihood:

&
p(6)? posterior RNd prior 1%
p(6|D)? p(6: o) o< p(8 : @) x p(D|f)
TOMEl »(D|0) = ],.p Bernoulli(z; ) = 6™ (1 — )™

Conjugate

To simplify the computation we want prior and posterior to have the same form (s, that we can easil
update our belief wi%/h
b new observations)

this gives us the following form  p(@|a,b) < 8*(1 — 0)

}

distribution of this form has a name, Beta distribution

we say Beta distribution is a conjugate prior to the Bernoulli likelihood
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Beta distribution

Beta distribution has the following density

\ s —
e Beta(9la, §) = A5 50 (1 - 0)
| | a, >0
oo g “ww===p Beta(@la=p=1) isuniform
mean of the distribution is ]E[H] = aaTﬁ
: o..z 0.I4 0.-6 = 1 for «,8>1 the dist. is unimodal; its mode is aigb
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Beta distribution: more examples
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Beta-Bernoulli conjugate pair )
=
how to model probability of heads when we toss a coin N times i
Al
od Drior P
p(6) o< 62 1(1 — )71 p(6) = Beta(]o, 8)
TANEEEM »(D|6) = 67 (1 — 0)™: L(0; D) = [] Bernoulli(Ny, N¢|0)
product of Bernoulli likelihoods
equivalent to Binomial likelihood
p(8|D) o gotNn—1(1 — g)B+N—1 p(0|D) = Beta(0|a + Ny, B+ Ni)

a, B are called pseudo-counts

their effect is similar to imaginary observation of heads ( « ) and tails ( 8)
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Effect of more data

with few observations, prior has a high influence

as we increase the number of observations N = |D| the effect of prior diminishes
the likelihood term dominates the posterior

prior Beta(#|10,10)

plot of the posterior density with n observations

p(Q‘D) X 010+H(1 - 9)10+N7H

P
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Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

what if we use the maximum likelihood estimste for the best parameter, 6¥L¥, and plug it in
the p(x|0) to make the prediction?

Example:

if we see four heads in a row, what is the probability of seeing a tail next?
if D=1{1,1,1,1}, what is M£¥? 1.0

¢ ) = 1-0ME = 0.0
p(0[0) =6°(1 -1 =1-9

Next, let's use the posterior distribution we learn through Bayesian inference
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Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

now we have a (posterior) distribution over parameters, p(6|D), rather than a single §MZE

6MLE only gives a single best guess based on that parameter, p(z|6)

To make predictions, we calculate the average prediction over all possible values of 6

p(z|D) = [, p(6|D) de

a=10, B=10

40
for each possible g, weight the prediction by the 35
posterior probability of that parameter being true 30

pricr
—— posterior
""" pl1]8)

p(1D)

Posterior

0.0 0z 0.4 0.6 na 10
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Posterior predictive

our goal was to estimate the parameters ( @ ) so that we can make predictions

now we have a (posterior) distribution over parameters, p(6|D)

To make predictions, we calculate the average prediction over all possible values of 6

if we see four heads in a row, what is the probability of seeing a tail next?

if D=1{1,1,1,1}, what is p(0|D)? depends on our prior belief

a=10, f=10 a=1,8=1
5
pricr prior
— posterior —— posterior
pillé) 4 pl1]8)
pl0|&) pi0|8)
pil|o) L3 pi1|D)
== p(0]D) E = p(0|D)
&
82

-
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when the strenght of prior gets close to zero the prediction becomes similar to MLE

Posterior
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prior
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P18
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Posterior predictive for Beta-Bernoulli

start from a Beta prior p(6) = Beta(f|a, )
observe N, heads and N; tails, the posterior is p(6|D) = Beta(f|a + Ny, 5+ Ny)

Given this estimate of the parameters from training data,

how can we predict the future?
what is the probability that the next coin flip is head?

marginalize over 6

p(z = 1|D) = [, Bernoulli(z = 1|6)Beta(f|a + N, 8 + N;)dé
= [, 0Beta(f|a + Ny, 5+ N;)dO = %

if we see four heads in a row, what is the probability of seeing a tail next?
ey - 14 10
if D={1,1,1,1}, what is p(1|D)? 510 p(0|D)? 55
when we assume the prior is Beta(a = 10, 8 = 10)

compare with prediction of maximum-likelihood: p(z =1/D) = f =1, p(z =1/D) =0 4



Posterior predictive for Beta-Bernoulli

start from a Beta prior p(6) = Beta(f|a, 3)
observe N, heads and N; tails, the posterioris p(6|D) = Beta(f|a + Ny, 5+ Ny)

Given this estimate of the parameters from training data, how can we predict the future?
Oé—|—Nh

p(z = 1|D) = [, Bernoulli(z = 1|6)Beta(f|a + Ny, 5 + N;)do = o BN
Example:
compare with prediction of maximum-likelihood: p(z = 1|D) = & sequential Baysian
updating

if we assume a uniform prior, the posterior predictive is p(z = 1|D) = f&5  with uniform prior

Laplace smoothing (Nf;]Nt)

(0,0)

Ll Ll

(1,0 (0, 1)

/4'/(1 1) (0 2
P 0) @, 1) (1,2) / 0,3)
_ (3 1 ,0(2 2) Aas

a.k.a. add-one smoothing

to avoid ruling out unseen
cases with zero counts




Strength of the prior

with a strong prior we need many samples to really change the posterior
for Beta distribution a + 8 decides how strong the prior is: how confident we are in our prior

example as our dataset grows our estimate becomes more accurate
a

different prior means ot B different prior strength @ + ﬂ
0.6 I I I T 0.6 I 1 | I
posterior estimates posterior estimates
0.5 0.5¢
a | a8
= —
true value y & - e e I N
011/ ] 0.1
l/’
O | | | L 0 | L Il L
0 20 40 60 80 100 0 20 40 60 80 100
I\ = # samples N = # samples

example: PGM book by Koller & Friedman, figure 17.5



Maximum a Posteriori (MAP)

sometimes it is difficult to work with the posterior dist. over parameters

alternative: use the parameter with the highest posterior probability p(6|D)

64" = arg maxy p(6|D) = arg maxy p(6)p(D|6)

compare with max-likelihood estimate (the only difference is in the prior term)

OMLE — arg maxy p(D|6)

for the posterior p(6|D) = Beta(f|a + Ny, 8 + Ny)

eMAP — a+Np—1
a+B+Np+Ny—2

MAP estimate is the mode of posterior

compare with MLE  0M5F = N,ﬁNt

they are equal for uniform prior a=8=1

D={1,1,1,1}

a=10, =10
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Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin)

instead of Bernoulli we have multinoulli or categorical dist.

Bernoulli(z|§) = #*(1 — §)1—®)

/]
1—6
6
once;
n times:

Bernoulli distribution
binomial distribution

Cat(x[0) = [Ti, 6,

--------------

1 2 3 4 5 6

categorical distribution

multinomial distribution -



Categorical distribution

what if we have more than two categories (e.g., loaded dice instead of coin)
instead of Bernoulli we have multinoulli or categorical dist.

Cat(z|0) = [T, 61"

I
where Z k Hk =1
(0,0,1)
@ belongs to probability simplex
’91 T =
Oy == < >
03 - 3
0) =
p(z|0) 6, o= . :
0 z—5 j (0,1,0) 8y
0 z=6 P l 0,0
K =3

SP6, =1 !

0, +6,+ 63 =1

29



Maximum likelihood for categorical dist.
likelihood  p(DI8) = [1,ep Cat(el8) = [Loep ITies 627" = ITiy 6 5 N = Xpep Iz = k)
log-likelihood  £(6,D) =3, .p >, I(x = k)log(6) = >, Ni log(6y)

we need to solve %K(@, D) = 0 subjectto Zk 0. =1 using Lagrange multipliers

similar to the binary case, max-likelihood estimate is given by data-frequencies 9, ™1¥ — %

Distribution of coronavirus (COVID-19) cases in Canada as of September 15,2020, by
age group

categorical distribution with K=8

example

frequencies are max-likelihood parameter estimates

OMEE = 149

Proportion of cases
Addttional Information:



Dirichlet distribution

is a distribution over the parameters @ of a Categorical dist.
is a generalization of Beta distribution to K categories
= " this should be a dist. over prob. simplex >, 0r =1
(1,1,1) (3,3.3)
. ag) or—1

A A Dir(0|c) = Zk 0.

(1,7.7) (5,2,2) ( ‘ ) Hk Hk
A A vector of psedo-counts for K categories (aka concentration parameters)

(5.5.2) (0.2,0.2,0.2) a > 0VEk

A A

Dir(6, [.2,.2,.2])

for a = [1,..., 1], we get uniform distribution

for K=2, it reduces to Beta distribution
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Dirichlet-Categorical conjugate pair

Dirichlet dist. Dir(0|a) = H(ka ) [1, 6+~ is a conjugate prior for Categorical dist. Cat(z|0) = [], H,HC( -

od prior P likelihood

p(6) = Dir(d]a) o [, 6+~
n

: N
MAMEEE  p(D)0) = 11, 0"  we observe Ni, ..., Nk values from each category

p(0|D) = Dir(fla+n) < [ H,JCVkJra’“_l again, we add the real counts to pseudo-counts

N,
S plz=kD) =T

OMAP o+ N, —1
(Zk, akl+Nkl) K
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Summary

in ML we often build a probabilistic model of the data p(z;0)
learning a good model could mean maximizing the likelihood of the data

sometimes closed form solution
for more complex p, we use numerical methods

maxy log p(D|0) |

an alternative is a Bayesian approach:

maintain a distribution over model parameters

can specify our prior knowledge p(6)

we can use Bayes rule to update our belief after new oabservation p(6|D)
we can make predictions using posterior predictive p(z|D)

can be computationally expensive (not in our examples so far)

a middle path is MAP estimate: maxg log p(D|0)p(6)

models our prior belief
use a single point estimate and picks the model with highest posterior probability
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