
Reihaneh Rabbany

COMP 551 (winter 2022)

Machine Learning with Graphs

Applied Machine Learning

1

Learning objectives

How to represent graph structured data

Unsupervised learning with graphs

Community detection (clustering)

Supervised learning with graphs

Node classification

2

Motivation

Our world is complex and analyzing interconnected data provides the much
needed tools to study today’s phenomena (e.g., online societies) and enables us to
address the world’s emerging problems (e.g., covid-19)

Complex Systems

consists of many interconnected parts
characterized by time-dependent interactions among their parts
not an aggregation of their separate parts
when looked at as a whole gives non trivial insights
often interactions change states of parts, and the states of the parts change
the networks of interactions

4

Motivation: applications

natural sciences: connections between atoms, molecules, cells, organisms and
even the cosmic web

Chemistry Biology Physics

from a demo of galaxy networks

applied sciences: looking at compex system, as a whole, gives us non trivial
insights and is necessary to understand these systems in many applications, e.e.
in Medicine, law, even culinary (check this)flavor network

5

https://cosmicweb.kimalbrecht.com/
https://foodgalaxy.jp/FlavorNetwork/

X =

⎣⎢
⎢⎢⎢⎢
⎡ x(1)

⊤

x(2)
⊤

⋮
x(N)

⊤⎦⎥
⎥⎥⎥⎥
⎤
=

⎣⎢
⎢⎢⎡ x ,1

(1)

⋮
x ,1
(N)

x ,2
(1)

⋮
x ,2
(N)

⋯ ,

⋱
⋯ ,

xD
(1)

⋮
xD
(N)⎦⎥
⎥⎥⎤ ∈ RN×D

one instance

one feature

Representing Interconnected Data

Graphs

7

node, vertex

edge, link
the default representation

variations: simple, weighted, directed, signed, multi-edges and multi-type

nodes (heterogenous), attributed (nodes and or edges have feature vectors),

dynamic (sequence of graphs), multilayer networks (multi-view), hypergraphs

(beyond pairwise relations), etc.

we used independent instances as data in this course:

represent the relation between instances in data

outlinks
all nodes node 2 links to

inlinks
all nodes linking to 1

A = ⎣⎢⎢
⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1N

⋮
ANN

⎦⎥⎥
⎤

∈ RN×N

if unweighted then ∈ {0, 1}N×N

connections between nodes

X =

⎣⎢
⎢⎢⎡ x ,1

(1)

⋮
x ,1
(N)

x ,2
(1)

⋮
x ,2
(N)

⋯ ,

⋱
⋯ ,

xD
(1)

⋮
xD
(N)⎦⎥
⎥⎥⎤ ∈ RN×D

one instance

one feature

Representing Graphs

Features Matrix

8

Adjacency Matrix

marginals of are called degreeA

d =i A∑
j ij

node features

Real world graphs are sparse (have lots of zeros)

and we use sparse matrix representations
to store them (only store non-zero values)

outlinks
all nodes node 2 links to

inlinks
all nodes linking to 1

A = ⎣⎢⎢
⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1N

⋮
ANN

⎦⎥⎥
⎤

∈ RN×N

if unweighted then ∈ {0, 1}N×N

nodes
all nodes edge 2 links

edges, or second set of nodes
all edges node 1 belongs to

9

B = ⎣⎢⎢
⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1M

⋮
ANM

⎦⎥⎥
⎤

∈ RN×M

if unweighted then ∈ {0, 1}N×M

often used to represent
bipartite graphs

actor & movies
authors & papers
metabolites & reactions
words & documents
two possible one mode
projections: , and B B⊤ BB⊤

Representing Graphs

Adjacency Matrix

Incidence Matrix

person & friendship
paper & citation
cities & train tracks
protiens & binding

outlinks
all nodes node 2 links to

inlinks
all nodes linking to 1

A = ⎣⎢⎢
⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1N

⋮
ANN

⎦⎥⎥
⎤

∈ RN×N

if unweighted then ∈ {0, 1}N×N

Representing Graphs

Laplacian Matrix

Eigenvalues of Graph laplacian tells us about the
connectivity of the graph

e.g. number of zero eigenvalues is the number of
connected components
second-smallest eigenvalue of L is called Algebraic
connectivity or Fiedler value
Signs of values in Fiedler eigenvector (associated to

Fiedler eigenvalue) tell us how to partition the graph into
two components by breaking least edges, i.e.
minimum cut solution

L = D −A
∈ RN×N

sums to zero

sums to zero

10

L = ⎣⎢⎢
⎡ d ,1

⋮
−A ,N1

−A ,12

⋮
−A ,N2

⋯ ,

⋱
⋯ ,

−A1N

⋮
dN

⎦⎥⎥
⎤
∈ RN×N

diagonal degree matrix

Representing Graphs

outlinks
all nodes node 2 links to

inlinks
all nodes linking to 1

A = ⎣⎢⎢
⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1N

⋮
ANN

⎦⎥⎥
⎤

∈ RN×N

if unweighted then ∈ {0, 1}N×N

connections between nodes
Adjacency Matrix

marginals of are called degreeA

d =i A∑
j ij

Powers of
 : # of walks with length two

A

A2

If undirected, number of common neighbors
what is ?Aii

2

 : # of walks with length three
what is ?

A3

Aii
3

if undirected, gives the number of trianglesTr(A)/63

 we compute number of triangles more effectively from eigenvalues of as , since if is

eigenvalue of then is eigenvalue of

A λ6
1 ∑

i i
3 λ

A λp Ap

real world graphs usually have a lot of triangles, e.g. friends of friends are friends

i

k

j
Aki

Akj

12

outlinks

inlinks
A = ⎣⎢⎢

⎡A ,11

⋮
A ,N1

A ,12

⋮
A ,N2

⋯ ,

⋱
⋯ ,

A1N

⋮
ANN

⎦⎥⎥
⎤

13

Degree distribution
marginals of are called degree

if directed, (there is an edge from node to) we have

column-wise and row-wise marginals as indegree and out degree of nodes
, and

A

d =i A∑j ij

A =ij 1 j i

d =i
in A∑j ij d =i

out A∑j ji

total number of edges (if directed), or twice that if undirected

A∑i ∑j ij

degree distribution: how many nodes of degree are in the graph

is often heavy tailed in real world networks (there are few nodes with very high

degree & many with very small degree)

k

degree distribution is plotted in log-log and a line could give a goof fit
 : powerlaw distributionln(p(d)) = −αln(d) + ln(c) ⇒ p(d) = cd−α

often referred to as being scale-free since
p(λd) = λ cd−α −α

example degree distributions

http://konect.cc/plots/degree/

Real-world v.s. random graphs

Erdös-Rényi Model (ER) graphs

basis of random graph theory
simple model that results in small-world graphs
parameters: ER(n, p) or ER(n, m)

n: number of nodes
p: probability of an edge between any two nodes
m: number of edges

generation: all edges are equally likely so toss n(n-1)/2 coins

compare with real world
graphs which have a heavy tail

Degree distribution:

p(d)

d

p(d)

d 14

Powerlaws

Income follow a Pareto distribution
few individuals earned most of the money & majority earned small amounts
in the US 1% of the population earns a disproportionate 15% of the total US income
80/20 rule (): a general rule of thumb

e.g. 20 percent of the code has 80 percent of the errors

Pareto principle

Zipf's law
distribution of words ranked by their frequency in a random text corpus is approximated by a
power-law distribution
the second item occurs approximately 1/2 as often as the first, and the third item 1/3 as often
as the first, and so on

a common distribution

preferential attachment which results in scale-free graphs

 node is connected to existing nodes with p(i) ∝ di

15

https://en.wikipedia.org/wiki/Pareto_principle

Spectral clustering

consider function f that maps vertices to a value

f = (f , f ,… f) ∈1 2 N R ⇒N f Lf =⊤ A (f −2

1 ∑ij ij i f)j 2

measures how much the value of f is
smooth over edges, i.e. the difference of
values for connecting nodes

17

f1 f2

f3

How to cluster? Find that give smoothest results, i.e, minimizes this

f

f ∈i {+1,−1} and f =∑i i 0

f ∈i R and f =∑i i
2 N ⇒ min f Lf =⊤ Nλ1

relaxed

second smallest eigenvalue ⇒ sparsest cut
signs of corresponding eigenvector ⇒ cluster assignments

+1

−1

−1+1
+1

+1

−1

more than 2 clusters? use k-means on top k eigenvectors (each node is represented with k features)

Courant Fisher Minmax Theorem

read more here

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf

Clustering Graphs
Better choices for graphs:

modularity optimization
number of links between them is more than chance, examples: FastModularity, Louvain

random walk based
Within them a random walk is more likely to trap, e.g. Walktrap

 compression based
Coding gives efficient compression of any random walk, e.g. Infomap

centroid based
follow their closest leader e.g. TopLeader

the best default

18

Clustering Graphs
Modularity optimization

number of links between them is more than chance
: fraction of edges between cluster i and j, and eij a =i e∑j ij

Q = (e −∑i ii a) =i
2 Tr(e) − ∣∣e ∣∣2 1

optimize with an agglomerative hierarchical clustering
merge two cluster that give the highest gain in Q

ΔQ = 2(e −ij a a)i j

uses this with heap based data structure ⇒ O(m log n)
FastModularity

e =

⎣⎢
⎢⎢⎡
0.71
0.22
0.065
0.

0.35
0.3
0.35
0.

0.06
0.22
0.59
0.12

0.
0.
0.4
0.6⎦⎥

⎥⎥⎤

example

here ∣∣e ∣∣ =2
1 e∑ij ij

2

19

Clustering Graphs

20

Attributed Graphs
 Individual characteristics or activity (attributes) &
relations (graph)

Interplay between attributes and relations, a positive feedback loop
derived by two social theories:

social selection
similarity of individuals’ characteristics motivates them to form
relations

social influence
characteristics of individuals may be affected by the characteristics
of their relations

your neighbours’ attributes can reveal yours

birds of the same feather
flock together

inductive bias:
homophily

22

Node classification
Label Propagation Algorithm
label = mean (scalar) & mode (categorical) of your neighbors

proposed for semi-supervised classification of iid data
by defining a fully connected distance graph

23

Graph Representation Learning

Image form , also recommended to watch:

https://www.youtube.com/watch?v=uF53xsT7mjc
https://www.youtube.com/watch?v=8owQBFAHw7E

24

https://www.youtube.com/watch?v=uF53xsT7mjc
https://www.youtube.com/watch?v=8owQBFAHw7E

Graph Representation Learning

embed the graph in vector space G→ RN×D

distance in the embedded space ⇒ link prediction
decision boundaries in the embedded space ⇒ node classification

See 2018

 A Tutorial on Network Embeddings,

25

https://arxiv.org/pdf/1808.02590.pdf

Graph Representation Learning

embed the graph in vector space G→ RN×D

See 2018

 A Tutorial on Network Embeddings,

h :i i ∈ G→ RD

log σ(h h) +∑(i,j)∈E i
⊤

j log(1 −∑(i,j)∈E/ σ(h h))i
⊤

j

Preserves the edge structure based on cross-entropy loss:

26

https://arxiv.org/pdf/1808.02590.pdf

Graph Representation Learning

embed the graph in vector space G→ RN×D

See https://petar-v.com/talks/GNN-Wednesday.pdf

h :i i ∈ G→ RD

log σ(h h) +∑(i,j)∈E i
⊤

j log(1 −∑(i,j)∈E/ σ(h h))i
⊤

j

Preserves the edge structure based on cross-entropy loss:

This can be trained unsupervised, and puts connected nodes closeby
Deepwalk, node2vec and LINE redefine this based on nodes that co-occur in a (short) random
walk

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

27

https://petar-v.com/talks/GNN-Wednesday.pdf
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

An Encoder-Decoder Perspective

h :i i ∈ G→ RD

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Encoder gives low dimensional embedding that summarizes the graph
position and structure in local neighbourhood
Decoder reconstructs this neighbourhood given the embedding of the node

L = l(DEC(h ,h),S(i, j))∑i,j i j

28

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

An Encoder-Decoder Perspective

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

L = l(DEC(h ,h),S(i, j))∑i,j i j

learn embeddings for each node such that the inner product between the learned embedding vectors
approximates some deterministic measure of node similarity
gives identical to the solution for spectral clustering, i.e. d smallest eigenvectors of the Laplacian

29

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Shallow embedding algorithms

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

L = l(DEC(h ,h),S(i, j))∑i,j i j

30

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Shallow embedding algorithms

Read more:
 2018 &
, 2017 &

, 2020

 A Tutorial on Network Embeddings,
Representation Learning on Graphs
GLR book’s chapter on node embedding

L = l(DEC(h ,h),S(i, j))∑i,j i j

Limitations of Shallow Embeddings:

No parameter sharing ⇒ less scalable
Ignores features or attributes

Instead use graph neural networks, more complex encoders, which work based on feature
propagation

Number of parameters doesn't grow with graph size but feature dimension
Naturally incorporates node features

31

https://arxiv.org/pdf/1808.02590.pdf
https://www-cs.stanford.edu/people/jure/pubs/graphrepresentation-ieee17.pdf
https://cs.mcgill.ca/~wlh/grl_book/files/GRL_Book-Chapter_3-Node_Embeddings.pdf

Graph Neural Networks

 Use the local neighbourhood similar to convolution on images

GCN ()Kipf & Welling, ICLR’17

H =l+1 ϕ(AH W)l l

H =l+1 ϕ(H W)D̂− 2
1
ÂD̂− 2

1 l l

=Â A+ I

h =i
l+1 ϕ(h W)∑j∈N (i) cij

1
j
l l

32

https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

 Use the local neighbourhood similar to convolution on images

GCN ()Kipf & Welling, ICLR’17

H =l+1 ϕ(AH W)l l

33

https://tkipf.github.io/graph-convolutional-networks/

Summary

graphs are everywhere

real world graphs have special patterns

graphs are represented with matrices

unsupervised: graph clustering partitions the nodes in a graph

supervised: Node classification, Link prediction

Shallow and deep models for graphs

34

