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Learning objectives

What is dimensionality reduction?
What is it good for?
Linear dimensionality reduction:

e Principal Component Analysis
e Relation to Singular Value Decomposition



Motivation

Scenario: we are given high dimensional data and asked to make sense of it!
Real-world data is high-dimensional

e Visualization: we can't visualize beyond 3D
® Compression: processing and storage is costly
e Downstrean analysis, e.g. clustering or classification

B features may not have any semantics (value of the pixel vs happy/sad)

®  many features may not vary much in our dataset (e.g., background pixels in face images)

Dimensionality reduction: faithfully represent the data in low dimensions

e We can often do with real-world data (manifold hypothesis)



Dimensionality reduction

Dimensionality reduction: faithfully represent the data in low dimensions

® |earn a mapping between (coordinates) at low-dimension and high-dimensional data

some methods give this mapping in both directions and some only in one direction.



Dimensionality reduction

Dimensionality reduction: faithfully represent the data in low dimensions

® |learn a mapping between (coordinates) at low-dimension and high-dimensional data
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Principal Component Analysis (PCA)

PCAis a linear dimensionality reduction method

2" ¢ R?

where Q has orthonormal columns Q' Q =1
it follows that the pseudo-inverse of Qis QT = QR'Q) Q" =



PCA: optimization objective

PCAis a linear dimensionality reduction method

() ¢ R784

each image has 28x28=784 pixels

3

3

3

3

3

3
>
3
3

3

WA
WL
v

3

>

Q c R784X2

o

QT

..............

...............

................

W O TR e e
Wt .»‘-"’.'-.:_ wo, | e e SR

66666666666

faithfulness is measured by the reconstruction error

ming ¥, [l —2® Q0 '[} st QTQ=I
(n)




PCA: optimization objective

PCAis a linear dimensionality reduction method
faithfulness is measured by the reconstruction error

ming 3, [[e® ~a® Q0 [} st QTQ=I

»(n)
strategy: find D x D matrix Q, and only use D' columns [ Qi1,---
Since Q is orthogonal we can think of it as a change of coordinates Q= :
°)
4(9,1,0) _QD,l, .
> (1,0,0)

 y
..,QD,D_

,Q1.D |
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PCA: a change of coordinates

strategy. find D x D matrix Q, and only use D' columns Qi1,..-, Q1D

Q=

Since Q is orthonormal we can think of it as a change of coordinates

.
| @p,1,---,QD,D |

(0,1,0)

_example JRES

) (1707 0)
/ 010
(0,0,1) ‘

we want to change coordinates such that
coordinates 1,2,...,D' best explain the data for any given D'

> (1,0,0)




PCA preserves variance 1 -
Ql,l) st QI,D
Find a change of coordinate using orthonormal matrix Q — < . .
°9 ° 9 o
first new coordinate has maximum variance (lowest reconstruction error) QD 1 QD D
SEREEE :
second coordinate has the next largest variance N -

along which one of these directions the data has a higher variance? more spread out?

this direction is the vector

. . . . m(”)—r ( )T
projection is given by T, =2 n
2
| projection of the whole datasetis X = 21
T _ (1) (2 (V)1

2z =277,27 ..., 2



PCA preserves variance

Find a change of coordinate using orthonormal matrix

first new coordinate has maximum variance

L : _ (n)
projection of the whole datasetis 27 = X Var(z1) = § 22, (2
assuming features have zero mean, maximize the variance of the projection: %le Z1

1 T _ 1 TyT _ T
maX, 21 21 — MaXy, ¢ X Xq1 = maxy ¢q12.q

dxd covariance matrix

S=1tX"X=L3 (z -0)(z™ —0)T
because the mean is zero

)y

ij is the sample covariance of feature ¢ and j 1 (n) _(n)
Yij =Cov|X ;, X ;] =§ D2

J

_ 0)2
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Covariance matrix

variance of a random variable Var(z) = E[(z — E[z])?] = E[2?] — E[z]?
covariance of two random variable Cov(z,y) = E[(z — Elz])(y — Ely])] = E[zy] — E[z]E]y]

for ¢ RP we have covariance matrix

Cov(z1,x1) = Var(zy) Cov(z1,zp) _
21,1 21,D
=|: . i | =Ele-El)(e - E)T] =EjgeT] - BBl
| 2D 2pD_
given a dataset D = {z,..., 2™} sample covariance matrix

3 = Ep[(z — Epz])(z — Ep[z])T]

the empirical estimate
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Correlation and dependence

correlation is normalized covariance
Cov(z;,x;)

\/Var (x;)Var(x;)

Corr(z;, z;) = € [-1, +1]

two variables that are independent are uncorrelated as well
p(xi, z;) = p(z;)p(x;) 9 Elz;z;] = Elz;|E[z;] 9 Cov(z;z;) =0

the inverse is generally not true (zero correlation doesn't mean independence)

N @@L

in each example above correlation between two coordinates is zero, but they are not independent
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Decomposing the covariance matrix

covariance matrix is symmetric positive semi definite
e symmetric
m Mg = Cov(zg,zq) = Cov(zg,zq) = Xa 4
e positive semi definite
= foranyy e RP we have y Sy = (3 E[(z — E[z])(z — E[z])T]y) = Var(y z) > 0

any symmetric positive semi-definite matrix can be decomposed as

¥ =QAQ'
|

diagonal

orthogonal QQ' = Q'Q =1 (rotation and reflection)
17



PCA with Eigenvalue decomposition

find a change of coordinate using an orthogonal matrix

first new coordinate has maximum variance

max > st. o]l =1

covariance matrix is symmetric and positive semi-definite
X'X)'=X"X a'Ya=+a"X"Xa=+|Xal} >0 Va

any symmetric matrix has the following decomposition
2 — QAQT (as we see shortly using Q here is not a co-incidence)
||

QQ" = Q'Q =1 dxdorthogonal matrix  diagonal and sorted (A\; > Ay > A3 > ...)
each column is an eigenvector  corresponding eigenvalues are on the diagonal

positive semi-definiteness means these are non-negative
19



PCA: Principal Component Analysis

find a change of coordinate using an orthogonal matrix
first new coordinate has maximum variance
qgi = argmax, ¢ 'Y st. |loll=1

max, g QAQ'q = A1 using eigenvalue decomposition

. °_ ¢ ..o o maximizing direction is the eigenvector with the largest
°, eigenvalue (first column of Q)

so for PCA we need to find the eigenvectors of the covariance matrix

= Q.1 first principal direction
°® o o ) second eigenvector gives the = Q.2 second principal direction
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Reducing dimensionality

projection into the principal direction ¢; is given by Xg;

principle direction number 1 principle direction number 2

3 3]

21 2 4

14 1

04 = 0 =
-1 1
-2 -2
ST 6 2 2 5 3

Xa Xa

think of the projection XQ as a change of coordinates

we can use the first D' coordinates Z = XQ..p
to reduce the dimensionality while capturing a lot of the variance in the data

we can project back into original coordinates using X = ZQID,

reconstruction
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Example: digits dataset

let's only work with digit 2! z(™ e R84
21o1212]21al21z]a]21z]212]2[J])]2]2] 1] 2

center the data and form the covariance matrix Y, 84 734
find the eigenvectors of the covariance matrix, the principal directions
-1 ~ -~ -
1 1 I S P R
q1 q2 q20

use the first 20 directions to reduce dimensionality from 784 to 20!
using 20 numbers we can represent

PC coefficient aqui (the new coordinates) each image with a good accuracy
50x  -397x  -330x  195x  -167

rec.
-
I
- _——

|nput -134x [2022x  1790x -602x -203x  -146X 2x -356x  294x 114x
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https://projector.tensorflow.org/

example: text dataset

3D embedding of Word2Vec
embeddings (https://projector.tensorflow.org/)
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https://projector.tensorflow.org/

q1, 92, -

eigenface 0 eigenface 1 eigenface 2

[

eigenfaces for face recognition w(n) E R64X64 eigenface 4 eigenface 5 engenfaces eigenface 7

eigenface 3

example: face dataset

read more here

eigenface 8 eigenface 9 ergenface 10 eigenface 11

Lindsay Davenport

Lindsay Davenport " u in Surakait Sathirathai

eigenface 12 eigenface 13 eigenface 14 eigenface 15

Figure #6: Bunch of ghost shaped images. Look at them in the eyes.

Billy Crystal

mean face used
for centring the
data

Figure #9: n_components=250


https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184#:~:text=Eigenfaces%20is%20a%20method%20that,reducing%20computation%20and%20space%20complexity.

there is another way to do PCA

without using the covariance matrix
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Singular Value Decomposition (SVD)

any N x D real matrix has the following decomposition

X=UsSVv"

NxD DxD
orthogonal rectangular orthogonal
_ ‘ ‘ 7 _81 diagonal ] ‘ ‘ T
I s ) o
Ui UN
R | |
X 1 I
u, u; = 0Vi # j s; >0 vi v; = OVi 7 j

{uitleft singular vectors — singular values right singular vectors

assuming N > D we can ignore

e the last (N-D) columns of [/
e |ast (N-D) rows of §

similarly if p ~ n we can compress V/, S

X=USVv'

DxDDxD
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Singular value & eigenvalue decomposition

recall that for PCA we used the eigenvalue decomposition of > = %XTX

how does it relate to SVD?

X'X=W0wsvH'usv)=vs'v'usv' =vsv'
compare to %XTX = QAQ'

eigenvectors of Y; areright singular vectorsof X (Q =V

for PCA we could use SVD

® this is the standard computation which works directly with data matrix instead of the covariance matrix
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Picking the number of PCs

number of PCs in PCA is a hyper-parameter, how should we choose this?

2
each new principle direction explains some variance in the data ag = % Zn zc(ln)

suchthatwe have aj; > a9 > ... > ap (bydefinition of PCA)

we can divide by total variance to getaratio T; = EZ

for our digits example we get

0.12 —— var. for each PC 10

i
ad

sum of variance ratios up to a PC

0.8

o
(=]
@

06 we can explain 90% of variance in the data using 100 PCs

o
(=]
B

variance ratio
o
o
o
variance ratio

04

o
o
~

0.2
0.00 = cumulative var. ratio

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 €00 700 800
principle component principle component

first few principal directions explain most of the variance in the datal! 30



Picking the number of PCs

recall that for picking the principal direction we maximized the variance of the PC

max, y¢X ' Xg' =max, qXq' =max, ¢’ QAQ g =\
lgll =1 llgll =1 gl =1
A

so the variance ratios are also given by 7; = ZdiAd

so we can also use eigenvalues to pick the number of PCs

012 1 - var. for each PC
normalized eigenvalues of C
0.10 A1

> digits example:

0.06 {1

variance ratio

0044 ¥
0.02 1
0.00 1

0 20 40 60 80 10(
principle component

\ two estimates of variance ratios do match
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Matrix factorization

PCA and SVD perform matrix factorization

X~ (XQ)Q'
l

rows of this matrix are X
principal components

factor matrix

QT
Z X |

rows are orthonormal

¢

h 4

Z this is the matrix of low-dimensional features

pc coefficients
factor loading matrix

this gives a row-rank approximation to our original matrix X

e we can use this to compress the matrix
e we can find give a "smooth" reconstruction of X (remove noise or fill missing values) 33



Matrix factorization

0 100

changing the rank D' gives different amount of compression

2% of ori




Matrix factorization

K-means also can be seen as matrix factorization

1<

<+ each row has exactly one nonzero (responsibilities) , e.g., [0,1,0,0,0]

2

X ‘ ¢« eachrowis acluster center Mk

matrix product simply equates each row of X with one row of the factor matrix

e instead of principal components 9 cluster centers
e factor loading matrix one nonzero per row of Z (each node belongs to one cluster)
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Autoencoders

a feed-forward neural net which predicts its input

e can be trained with reconstruction loss
m . n ~(n)||2
e.g. mean squared error: S Ha;( ) — 4( )||2

dimensionality reduction with a bottleneck layer
much smaller than input

A

output | &1 L2 vee LD

WW

hidden units 21 Xy Zp!
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Autoencoders

Decoder
o gz 'x
a feed-forward neural net which predicts its input b

e can be trained with reconstruction loss '

= e.g. reconstruction loss: ||m—1/)( (a:))||%

2
Text
dimensionality reduction with a bottleneck layer
much smaller than input

¢ optimal weights for linear autoencoder are the principal components
¢ nonlinear dimensionality reduction if activations are not all linear

" projecting the data on a non-linear manifold - v s .
m deep autoencoders are very powerful

. Encoder . i

image form:
https://www.cs.toronto.edu/~hinton/science.pdf
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Autoencoders: example

MNIST digits
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https://www.cs.toronto.edu/~hinton/science.pdf

Summary

Dimensionality reduction helps us:

e visualize our data

e compress it

e simplify the computational need of further analysis (clustering, supervised learning etc.)
e also can be used for anomaly detection (not discussed)

PCA is a linear dimensionality reduction method

e projects the data to a linear space (spanned by D' principal directions)

= directions are eigenvectors of the covariance matrix
= the projection has maximum variance (minimum reconstruction error)
= eigenvalues tell us about the contribution of each new principal direction

PCA using Singular Value Decomposition

Model selection for PCA

PCA as matrix factorization and its relationship to k-means
practical note: don't forget to subtract the mean!
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