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What is dimensionality reduction?
What is it good for?
Linear dimensionality reduction:

Principal Component Analysis
Relation to Singular Value Decomposition

Learning objectives
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Real-world data is high-dimensional

  
Motivation

Visualization: we can't visualize beyond 3D

Compression: processing and storage is costly

Downstrean analysis, e.g. clustering or classification

features may not have any semantics (value of the pixel vs happy/sad)

many features may not vary much in our dataset (e.g., background pixels in face images)

Dimensionality reduction: faithfully represent the data in low dimensions

We can often do this with real-world data (manifold hypothesis)

finding meaningful low-dimensional structures in high-dimensional observations

Scenario: we are given high dimensional data and asked to make sense of it!
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Dimensionality reduction
  

Dimensionality reduction: faithfully represent the data in low dimensions

learn a mapping between (coordinates) at low-dimension and high-dimensional data

x ∈(n) R3 z ∈(n) R2

some methods give this mapping in both directions and some only in one direction.
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Dimensionality reduction: faithfully represent the data in low dimensions

x ∈(n) R400 z ∈(n) R2

image: wikipedia

each image is 20x20

  
Dimensionality reduction

learn a mapping between (coordinates) at low-dimension and high-dimensional data
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x ∈(n) R3

  
Principal Component Analysis (PCA)
PCA is a linear dimensionality reduction method

where  has orthonormal columnsQ Q Q =⊤ I

it follows that the pseudo-inverse of Q is Q =† (Q Q) Q =⊤ −1 ⊤ Q⊤

Q⊤

Q ∈ R3×2

z ∈(n) R2z ∈(n) R2
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faithfulness is measured by the reconstruction error

∣∣x −∑n
(n) x QQ ∣∣(n)⊤ ⊤

2
2 s.t. Q Q =⊤ I

  
PCA: optimization objective
PCA is a linear dimensionality reduction method

z(n)

minQ

x ∈(n) R784
each image has 28x28=784 pixels z ∈(n) R2

Q ∈ R784×2

z ∈(n) R2

Q⊤

9



PCA: optimization objective
  

PCA is a linear dimensionality reduction method
faithfulness is measured by the reconstruction error

∣∣x −∑n
(n) x QQ ∣∣(n)⊤ ⊤

2
2

z(n)

minQ s.t. Q Q =⊤ I

strategy: find  matrix Q, and only use D' columnsD ×D

Q = ⎣⎢⎢
⎡ Q ,… ,Q1,1 1,D

⋮,⋱ , ⋮
Q ,… ,QD,1 D,D

⎦⎥⎥
⎤

Since Q is orthogonal we can think of it as a change of coordinates

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

q1 qD
q1

q2

q3
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PCA: a change of coordinates
  

Since Q is orthonormal we can think of it as a change of coordinates

strategy: find               matrix Q, and only use D' columnsD ×D

Q = ⎣⎢⎢
⎡ Q ,… ,Q1,1 1,D

⋮,⋱ , ⋮
Q ,… ,QD,1 D,D

⎦⎥⎥
⎤

q1 qD

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

q1

q2

q3

we want to change coordinates such that
coordinates 1,2,...,D' best explain the data for any given D'
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example

(1, 0, 0)

(0, 1, 0)

q1

q2

D = 2



Find a change of coordinate using orthonormal matrix

first new coordinate has maximum variance (lowest reconstruction error)

second coordinate has the next largest variance
...

Q = ⎣⎢⎢
⎡ Q ,… ,Q1,1 1,D

⋮,⋱ , ⋮
Q ,… ,QD,1 D,D

⎦⎥⎥
⎤

q1

along which one of these directions the data has a higher variance? more spread out?

q1this direction is the vector

projection is given by =∣∣q ∣∣1 2

x q(n)⊤
1 x q(n)⊤

1

projection of the whole dataset is Xq1 = z1

z =1
⊤ [z , z ,… , z ]1

(1)
1
(2)

1
(N)
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PCA preserves variance



Find a change of coordinate using orthonormal matrix

first new coordinate has maximum variance

projection of the whole dataset is z =1 Xq1

max z zq1 N
1

1
⊤
1 = max q X Xqq1 N

1
1
⊤ ⊤

1
dxd covariance matrix

= max q Σqq1 1 1
⊤

is the sample covariance of feature  and i jΣi,j
Σ =i,j Cov[X ,X ] =:,i :,j x x

N
1 ∑n i

(n)
j
(n)

Σ = X X =
N
1 ⊤ (x −

N
1 ∑n

(n) 0)(x −(n) 0)⊤
because the mean is zero

assuming features have zero mean, maximize the variance of the projection: z z
N
1
1
⊤
1

V ar(z ) =1 (z −
N
1 ∑n 1

(n) 0)2
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PCA preserves variance



Covariance matrix
variance of a random variable Var(x) = E[(x− E[x]) ]2 = E[x ] −2 E[x]2

covariance of two random variable Cov(x, y) = E[(x− E[x])(y − E[y])] = E[xy] − E[x]E[y]

Σ = ⎣⎢⎢
⎡Σ1,1
⋮

ΣD,1

…

⋱
…

Σ1,D

⋮
ΣD,D

⎦⎥⎥
⎤

x ∈ RDfor we have covariance matrix

= E[(x− E[x])(x− E[x]) ]⊤

D × 1 1 ×D

= E[xx ] −⊤ E[x]E[x]⊤

D ×D D ×D

Cov(x ,x )1 DCov(x ,x ) =1 1 Var(x )1
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D = {x ,… ,x }(1) (N)given a dataset

=Σ̂ E [(x−D E [x])(x−D E [x]) ]D
⊤

sample covariance matrix

ΣMLE

x− x(
N
1 ∑x∈D )

the empirical estimate



Correlation and dependence
correlation is normalized covariance

Corr(x ,x ) =i j Var(x )Var(x )i j

Cov(x ,x )i j ∈ [−1,+1]

two variables that are independent are uncorrelated as well
p(x ,x ) =i j p(x )p(x )i j E[x x ] =i j E[x ]E[x ]i j Cov(x x ) =i j 0

image from wikipedia

the inverse is generally not true (zero correlation doesn't mean independence)

in each example above correlation between two coordinates is zero, but they are not independent
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Decomposing the covariance matrix
covariance matrix is symmetric positive semi definite

symmetric 

positive semi definite
for any  we have

Σ =d,d′ Cov(x ,x ) =d d′ Cov(x ,x ) =d′ d Σd ,d′

y ∈ RD y Σy =⊤ (y E[(x−⊤ E[x])(x− E[x]) ]y) =⊤ Var(y x) ≥⊤ 0

any symmetric positive semi-definite matrix can be decomposed as

Σ = QΛQ⊤

diagonal

orthogonal

D ×D

QQ =⊤ Q Q =⊤ I (rotation and reflection)

Spectral Decomposition
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find a change of coordinate using an orthogonal matrix

first new coordinate has maximum variance

covariance matrix is symmetric and positive semi-definite

max q Σqq1 1 1
⊤ s.t. ∣∣q ∣∣ =1 1

(X X) =⊤ ⊤ X X⊤ a Σa =⊤ a X Xa =
N
1 ⊤ ⊤ ∣∣Xa∣∣ ≥

N
1

2
2 0 ∀a

any symmetric matrix has the following decomposition

Σ = QΛQ⊤

diagonal and sorted ( )λ >1 λ >2 λ >3 …
corresponding eigenvalues are on the diagonal
positive semi-definiteness means these are non-negative

dxd orthogonal matrix
each column is an eigenvector

QQ =⊤ Q Q =⊤ I

(as we see shortly using Q here is not a co-incidence)
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PCA with Eigenvalue decomposition



  
PCA: Principal Component Analysis

q =1
∗ argmax q Σqq1 1

⊤
1 s.t. ∣∣q ∣∣ =1 1

max q QΛQ q =q1 1
⊤ ⊤

1 λ1

so for PCA we need to find the eigenvectors of the covariance matrix

maximizing direction is the eigenvector with the largest
eigenvalue (first column of Q)

 first principal directionq =1 Q:,1

second eigenvector gives the second principal direction...

q =2 Q:,2

using eigenvalue decomposition

find a change of coordinate using an orthogonal matrix

first new coordinate has maximum variance
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Reducing dimensionality
  

projection into the principal direction       is given by              

think of the projection XQ as a change of coordinates

qi Xqi

we can use the first D' coordinates                                      
to reduce the dimensionality while capturing a lot of the variance in the data

Z = XQ:,:D′

we can project back into original coordinates using =X
~

ZQ:,:D′
⊤

reconstruction 21



Example: digits dataset
  

let's only work with digit 2! x ∈(n) R784

form the covariance matrix Σ 784 × 784center the data and

use the first 20 directions to reduce dimensionality from 784 to 20!

find the eigenvectors of the covariance matrix, the principal directions

...
q1 q2 … q20

x(1) x(2) ...

PC coefficient x q⊤ i (the new coordinates)
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using 20 numbers we can represent
each image with a good accuracy



  
example: digits dataset
3D embedding of MNIST digits
( )https://projector.tensorflow.org/

x ∈(n) R784

the embedding 3D coordinates are

Xq ,Xq ,Xq1 2 3
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https://projector.tensorflow.org/


example: text dataset
  

3D embedding of Word2Vec
embeddings ( )https://projector.tensorflow.org/

x ∈(n) R200

it is common to use
dimensionality
reduction to
visualize and inspect
results of other
representation
learning methods
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https://projector.tensorflow.org/


example: face dataset
  

eigenfaces for face recognition
read more here

mean face used
for centring the
data

x(n)

q , q ,… q1 2 15

z =(n) x Q(n)⊤
:,:250

x ∈(n) R64×64
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https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184#:~:text=Eigenfaces%20is%20a%20method%20that,reducing%20computation%20and%20space%20complexity.


there is another way to do PCA
without using the covariance matrix
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Singular Value Decomposition (SVD)
  

any N x D real matrix has the following decomposition

X = USV ⊤
N ×D N ×N N ×D D ×D

rectangular
diagonal

⎣⎢
⎢⎢⎢⎢
⎡s1

s2
⋱

⎦⎥
⎥⎥⎥⎥
⎤

s ≥i 0

singular values
u u =i
⊤

j 0∀i = j

orthogonal

⎣⎢
⎢⎢⎢⎢
⎡ ∣
∣
u1
∣
∣

…
…
…

∣
∣
uN
∣
∣ ⎦⎥
⎥⎥⎥⎥
⎤

left singular vectors{u }i

orthogonal

⎣⎢
⎡ ∣
v1
∣

…
…
…

∣
vN
∣ ⎦⎥
⎤⊤

v v =i
⊤

j 0∀i = j

right singular vectors
28

assuming               we can ignore

the last (N-D) columns of
last (N-D) rows of

similarly if               we can compress     ,

N > D

U
S

D > N V S

compressed SVD

X = USV ⊤
N ×D D ×D D ×D

why?

N ×D



Singular value & eigenvalue decomposition
  

recall that for PCA we used the eigenvalue decomposition of Σ = X X
N
1 ⊤

how does it relate to SVD?

X X =⊤ (USV ) (USV ) =⊤ ⊤ ⊤ V S U USV =⊤ ⊤ ⊤ V S V2 ⊤

eigenvectors of        are right singular vectors of X Q = V

for PCA we could use SVD

this is the standard computation which works directly with data matrix instead of the covariance matrix

Σ

compare to X X =
N
1 ⊤ QΛQ⊤ (X X) =⊤ −1 V S V−2 ⊤
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Picking the number of PCs

we can divide by total variance to get a ratio r =i a∑d d

ai

each new principle direction explains some variance in the data a =d z
N
1 ∑n d

(n)2

such that we have                                               (by definition of PCA)a ≥1 a ≥2 …≥ aD

we can explain 90% of variance in the data using 100 PCs

sum of variance ratios up to a PC

number of PCs in PCA is a hyper-parameter, how should we choose this?

optional

for our digits example we get

first few principal directions explain most of the variance in the data!

example
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Picking the number of PCs
  

recall that for picking the principal direction we maximized the variance of the PC

max qX Xqq N
1 ⊤ ⊤

∣∣q∣∣ = 1

= max qΣqq
⊤

∣∣q∣∣ = 1

= max q QΛQ q =q1
⊤ ⊤ λ1

∣∣q∣∣ = 1

so the variance ratios are also given by r =i λ∑
d d

λi

digits example:
two estimates of variance ratios do match

so we can also use eigenvalues to pick the number of PCs

optional
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X ≈ (XQ)Q⊤

  
Matrix factorization
PCA and SVD perform matrix factorization

rows of this matrix are
principal components
factor matrix

this is the matrix of low-dimensional features

pc coefficients
factor loading matrix

N ×D′

Z

N ×D′ D ×′ D

this gives a row-rank approximation to our original matrix X

we can use this to compress the matrix
we can find give a "smooth" reconstruction of X (remove noise or fill missing values)

≈ ×N

D

N

D

D′

D′

rows are orthonormal

Q⊤

ZX
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Matrix factorization
  

example

427 × 640

≈ ×

427 × 50

50 × 640

=

20% of original size

changing the rank D' gives different amount of compression

D =′ 52% of original size D =′ 208% of original size 80% of original size D =′ 200

D =′ 50
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Matrix factorization
  

≈ ×N

D

N

D

K

K

K-means also can be seen as matrix factorization

relationship to K-means

each row is a cluster center μk

each row has exactly one nonzero (responsibilities) , e.g., [0,1,0,0,0]

instead of principal components           cluster centers
factor loading matrix          one nonzero per row of Z (each node belongs to one cluster)

matrix product simply equates each row of X with one row of the factor matrix
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a feed-forward neural net which predicts its input

can be trained with reconstruction loss

 
dimensionality reduction with a bottleneck layer
 

e.g.   mean squared error: 

Autoencoders

∣∣x −∑n
(n) ∣∣x̂(n) 2

2

W

x1 ...

...

x2 xD

z1 zD′

x̂1

37

input

...x̂2 x̂D

hidden units

output

V

D ≪′ Dmuch smaller than input



a feed-forward neural net which predicts its input

can be trained with reconstruction loss

 
dimensionality reduction with a bottleneck layer
 

e.g.   reconstruction loss: 

optimal weights for linear autoencoder are the principal components
nonlinear dimensionality reduction if activations are not all linear

projecting the data on a non-linear manifold
deep autoencoders are very powerful

Autoencoders

∣∣x− ψ(ϕ(x))∣∣2
2

much smaller than input

ϕ : x→ z

ψ : z → x̂

x̂Text

image form:
https://www.cs.toronto.edu/~hinton/science.pdf
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Autoencoders: example

MNIST digits 

PCA      v.s.       Autoencoder

newswire stories

read the paper here

∣∣x −∑n
(n) ψ(ϕ(x ))∣∣(n)

2
2∣∣x −∑n

(n) x QQ ∣∣(n)⊤ ⊤
2
2

s.t. Q Q =⊤ I
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Summary
  

Dimensionality reduction helps us:

visualize our data
compress it
simplify the computational need of further analysis (clustering, supervised learning etc.)

also can be used for anomaly detection (not discussed)

PCA is a linear dimensionality reduction method

projects the data to a linear space (spanned by D' principal directions)
directions are eigenvectors of the covariance matrix
the projection has maximum variance (minimum reconstruction error)
eigenvalues tell us about the contribution of each new principal direction

PCA using Singular Value Decomposition
Model selection for PCA
PCA as matrix factorization and its relationship to k-means
practical note: don't forget to subtract the mean! 40


