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Motivation

METHODS AND ALGORITHMS USAGE

Linear or Logistic
Regression

Decision Trees or
Random Forests

Today's topic is highly ==
practical -

Gradient Boosting
Machines (xgboost,
lightgbm, etc.)

Convolutional Neural
Networks

Bayesian Approaches

Recurrent Neural
Networks

Neural Networks
(MLPs, etc.)

Transformer Networks
(BERT, gpt-3, etc.)

Generative Adversial

MNetworks

Evolutionary

Approaches

from 2020 Kaggle's survey on the state of other
Machine Learning and Data Science, \

one

you can read the full version here
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https://www.kaggle.com/kaggle-survey-2020

Learning objectives

bootstrap for uncertainty estimation
bagging (bootstrap aggregation) for variance reduction

e random forests
boosting
e AdaBoost

e gradient boosting
e relationship to L1 regularization



Reminder: bias vs. variance

variance is the
average difference
(in squared L2
norm) between
these curves and
their average
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I variance:E[(fp(z) — Ep[fp(x)])?]
how change of dataset affects

the prediction
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B bias: E[(f(2) — Ep[fp(2)))*]
how average over all
datasets differs from the
regression function

bias is the difference
(in L2 norm) between
two curves



Reminder: bias vs. variance
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the expected loss (test
error) increases with
both bias and variance

simple or
weak models
seem to do
good on
average and
have lower
variance

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.15
(bias)
0.12 variance
(bias)2 + variance
0.09 i—/
0.06 | 1
o % |
0 L 1
=3 -2 -1 0 1 2

High Bias
Low Variance

\—/average testerror
average training error

Low Bias
High Variance

T T
5 10

T T T
15 20 25

model complexity

T
30

T
35



Reducing Bias & variance

we saw a trade-off between bias (simplicity) and variance (complexity)

reduce the variance of a model w/o increasing its bias?

average multiple models trained on subsets of the data

reduce the bias of a model w/o increasing its variance?

reduce the bias of (simple models) by adding them in steps



Bagging (Bootstrap aggregation)

given the dataset D = {(z™,y™)},

subsample with replacement B datasets of size N (non-parametric) bootstrapping

Dy = {(z™®, y™ NIV b=1,...,B

n=1»
train a model fb on each of these bootstrap datasets (called bootstrap samples)

aggregate the predictions of these models (Bootstrap aggregation)

f(z) = 53, fol2)

bootstrapping can also use to produce a measure of uncertainty in predictions



Bootstrap for uncertainty estimation
a simple approach to estimate the uncertainty in prediction

non-parametric bootstrap

given the dataset D = {(z™,y(™)}

subsample with replacement B datasets of size N W1, Y1 W2,Y2 W3,Y3

Dy = {(a,y™ )} b=1,...,B

train a model on each of these bootstrap datasets
(called bootstrap samples)

produce a measure of uncertainty from these models

e for model parameters

e for predictions sample the same size as

the original training set

10



Bootstrap for uncertainty estimation

recall our running example with nonlinear Gaussian bases (N=100 training data points)

21 . re—— (™ =sin(z™) + cos(/|z™]) + €

before adding noise

noise

0 2 4 6 v 8 10

our fit to all datapoints using 10 Gaussian bases



Bootstrap for uncertainty estimation

recall our running example with nonlinear Gaussian bases (N=100 training data points)

using B=500 bootstrap samples

gives a measure of uncertainty of the parameters also gives a measure of uncertainty of the predictions
100_ . . |o A4
each color is a different weight W
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0 ) 4 6 . 8 10
2 -1 0 1 2 the red lines are 5% and 95% quantiles
(for each point we can get these across bootstrap model predictions) 12



Bagging (Bootstrap aggregation)

why using average predictions reduces variance?

variance of the sum of random variables
Var(z; + 2z2) = E[(z1 + 22)2] — Elz1 + 22]2
= E[2] + 25 + 22125] — (E[z1] + E[22])?
= E[21] + E[23] + E[22120] — E[21]* — E[22]* — 2E[21]E[23]
= Var(z;1) + Var(z2) + 2Cov(z1, 22)

for uncorrelated variables this term is zero

variance of the sum of z; ...z uncorrelated random variables

Var(>, z) = >, Var(z)

variance of the average of z; ... 25 uncorrelated random variables, all with variance of o2

Var(% Y, 2) = 5:Var(Y., 2) = 5: Bo? = 07

13



Bagging (Bootstrap aggregation)

averaging uncorrelated variables reduces the variance i |
Xam
of our model by a factor of B (number of bootstraps) ~ Example
HOW MUCH DOES THE OX WEIGH? =22+
THE TASK | comise rie'vcis

so the Bagging reduces variance

(in reality, predictions are not uncorrelated)

]E(m) = % Zb Aiw) IHEIIES‘III.TS

prediction using bootstrap sample b - enc

ACTUAL WEIGHT:

infographics from: domo.com 14



Bagging (Bootstrap aggregation)

(e ENSile=1d[e]gl] e cannot use mean of classifiers, use voting (i.e., mode)

21,...,28 € 40,1} are lID Bernoulli random variables with mean y = .5 + € (¢ > 0), then
P($>,2 >.5) =1 as Bgrows
i.e., even if individual predictions are very noisy, average prediction can be accurate

ONE EXAMPLE O AGGREGATION COMES FROM THE T SHOW e.g. with 10K classifiers that are each only slightly better

WHO WANTS T0 BE A MILLIONAIRE? ==—— than chance (0.51percent accurate), we get an overall
OF THE GAMES IN WHICH CONTESTANTS USED A LIFELINE: dCCura Cy Of 0 97

§1%
@ wisdom of crowds

bagging produces a better classifier!
crowds are wise when

¢ individuals are better than random
e yotes are uncorrelated

infographics from: domo.com 15




Bagging decision trees

Original Tree B

x.1<0.395 x1 < 0.555 x.2 < 0.205
“ ——
1 1
0 10 0
0o 1
10 0
0 1 1 0 [ o 1
b=3 b=4 b=5
x.2<0.285 x3<0.985 x4 <-1.36
0
0
1
1 o 10

0

1 1

b=6 b=7 b=8
X.1<0.395 x.1<0.395 x.3<0.985

x.1<0.555 x.1<0.555

* synthetic dataset
e 5 correlated features
e st feature is a noisy predictor of the label

0.40 0.45 0.50

Test Error
0.35

0.25 0.30

0.20

(e}

Consensus

Probability

Original Tree

Bagged Trees

Bootstrap samples create different decision trees (due to high variance of decision trees)
compared to decision trees, no longer interpretable!

voting for the most probably class
averaging probabilities

17



Random forests

r . .
F to further reduce the correlation between decision trees

1 T feature sub-sampling
only a random subset of features are available for split at each step
J further reduce the dependence between decision trees

magic number? 4/ D

this is a hyper-parameter, can be optimized using CV

Out Of Bag (OOB) samples:

e the instances not included in a bootsrap dataset can be used for validation
e simultaneous validation of decision trees in a forest
* No need to set aside data for cross validation

18



Spam detection

N=4601 emails
binary classification task: spam - not spam
D=57 features:

e 48 words: percentage of words in the email that match these words
= eg, business,address,internet, free, George (customized per user)

e 6 characters: again percentage of characters that match these
m ch;, ch(,ch[,ch!,ch$, ch#

e average, max, sum of length of uninterrupted sequences of capital letters:

= CAPAVE, CAPMAX, CAPTOT

average value of these features in the spam and non-spam emails

george you your hp free hpl !' our re edu remove
spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 090 0.07 0.43 0.11 0.18 0.42 0.29  0.01

an example of
feature engineering

19



Spam detection

decision tree after pruning N

s
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ch$>0.0555

G
80/117 4@359

remove <0.06 |;p<0 405 '\,

/ remove>0.06 ; llpzo 405
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george<0. 005, CAPA\ E<2. m:. 1999(0 58 'u.
“-‘ gcor‘g_t)o 005 ;‘ CAPAVE>2.7505 ,s' 19990.58
367723
hp« 0.03 “-‘ free<0.065 "‘.‘
/' np=o0.03 g‘ free>0.065
jeog el g 2 Q
Nz [Te7s
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< D ]
/20723 /577185, 4]
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o B G} G
48'T
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I_W—Tlﬂ'lm

/ <h!>0.191 ,s' ,,«.mgwu 15 5' CAPAVE>2.907

misclassification rate on test data

Misclassification Rate

number of leaves (17) in optimal pruning
decided based on cross-validation error
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Spam detection

Bagging and Random Forests do much better Out Of Bag (OOB) error can be used for parameter tuning
than a single decision tree! (e.g., size of the forest)
E_ - Bagging I
e Random Forest 0
o —— Gradient Boosting (5 Node) 5 4
8 S OOB Error
° <] N Test Error
g b
3 5§ g
- g <©
o8 I\N a J
§ o ' g
€ = 3]
3 - %WWW -
‘5 -
§ N o 1 T T T T 1
o T T T T T T 0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500
Number of Trees

Number of Trees



Summary so far...

e Bootstrap is a powerful technique to get uncertainty estimates
e Bootstrap aggregation (Bagging) can reduce the variance of unstable models
e Random forests:

Bagging + further de-corelation of features at each split

OOB validation instead of CV

destroy interpretability of decision trees

perform well in practice

can fail if only few relevant features exist (due to feature-sampling)

Ensemble learning

Next:

reduce the bias of a model w/o increasing its variance?
reduce the bias of (simple models) by adding them in steps

Apuapuadapul ureny

Ajlenuanbas ulen

22



Adaptive bases

fixed set of basesin f(z) = Y, wqpq(z)

several methods can be classified as learning these bases adaptively

f(z) =, wida(x; vq)

decision trees

° Gaussian bases example

neural networks
boosting

in boosting each basis is a classifier or regression function (weak learner, or base learner)
create a strong learner by sequentially combining weak learners



Forward stagewise additive modelling

f(w) = Z w{t} ¢(w; 'U{t}) a simple model, such as decision Stump (decision tree with one node)

J{w,v®}) = 30, L™, /(2™))

e.g. L2 loss or hinge loss

optimizing this cost is difficult given the form of f

optimization 1s/=1z)| add one weak-learner in each stage t, to reduce the error of previous stage

1. find the best weak learner

ot wlth = argmin, , 330 L(y™, £ (M) + we(z™; )

2. add it to the current model

fi (z) = f{til}(w(n)) + w{t}¢(w(n)§ U{t}) 25



L5 loss & linear modelling

consider weak learners that are individual features ¢{t}(m) = w{t}md{t}

using L2 loss for regression 5(y — f(z))?

residual »™

2
atstaget argming,,, % ZnNzl (y(n) — (f{t—l} (a:(”)) + wdwg”&)))

(n) .(n)

2o . . . . Zn g Tq

eJeldlggiv4=R[e]g8  optimal weight for each dis wgq = SCE
n L4

pick the feature that most significantly reduces the residual

the model at time-step t: f{t} (:E) = Zt ’wéft}} I g{ty

is this related to L1-regularized linear regression?

27



L5 loss & linear modelling

using small learning rate L2 Boosting has a similar regularization path to lasso
lasso boosting
cavol wva | ateach time-step only one feature g{t} is updated / added
t
£ %] ¢¥ [ wy’
o o
S gieason 3 = gleason
T ; T ;
0 o5 10 15 20 o o w0
> g lwal t

we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K)

the number of steps t plays a similar role to (the inverse of) regularization hyper-parameter
28



Exponential loss

Misclassification

Exponential

Binomial Deviance
—— Squared Error
Support Vector

3.0

loss functions for binary classification y € {—1,+1}

2.5
!

predicted label is § = sign(f(z))

2.0

misclassification loss L(y, f(x)) = I(yf(x) > 0)

(0-1 loss) _,g ©
log-loss L(y, f(z)) = log (1 + e ¥/®) i
(aka cross entropy loss or binomial deviance) =
Hinge loss L(y, f(z)) = max(0,1 — yf(z)) o
support vector loss _‘2 _'1 (‘) 1' ;
yet another loss function is exponential loss L(y, f(x)) = e ¥/ v-f

note that the loss grows faster than the other surrogate losses (more sensitive to outliers)
useful property when working with additive models:

L(y, 1 () + w(z,v1)) = L(y, 1V (2)) - L(y, w! ¢(z, v1))

treat this as a weight q for an instance
instances that are not properly classified before receive a higher weight

30



AdaBoost

seiis using exponential loss

T({w™, v}, = S L™, £ (@) 4wl @™, o)) = 3 gLy, wlto (e 1)

loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

objective is to find the weak learner minimizing the cost above

J({w{t}’fv{t}} ) Z q _yn) {t}¢( {t})
——— S gMI(y™ # ¢a™, v)) + o—w! S ™Iy = ¢(z™, v1))
= ", (@ =) X, g™ # ¢a, vlh))

assuming with > () the weak learner should minimize this cost

this is classification with weighted intances 31



AdaBoost

J({w,v0}) = 3, ¢ Ly, wi oz, 0())

=e N0+ (e =) B, g # ¢, o))

assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives o{t}

still need to find the optimal w{t}

1Y

setting % — () gives witlh = %log wion

since weak learner is better than chance ¢it} < .5 andso with >0

we can now update instance weights q for next iteration q(n),{t+1} — q(n)a{t}e—w{t}y(n)¢($(n) ot

(multiply by the new loss) since w > 0, the weight q of misclassified points increase and the rest decrease
32



AdaBoost

overall algorithm for discrete AdaBoost f(z) = sign( 32, wi ¢(z;v1))
initialize q(”) = % Vn . w{T}¢(m;v{T})
for t=1:T
fit the simple classifier ¢($,v{t}) to the weighted dataset T
(n) 2™ () £y
f{t} - an H(‘ZSZ(” q(n) )#y ) . w{3}¢(az,v{3})
wl® = }log 156 |

g™ = g e—w Mo ®) gy e wPe(zs0t?)

W () = sign( T, w(z; o) oo wlelat)

33



AdaBoost

each weak learner is a decision stump (dashed line) § = sign(>, wt g(z
green is the decision boundary of f{t} T

S — | I — 2JElr -
°© oof 0° . : o :
’ o 4 To o o L, O o -, O .
& I R T

-

, Training Sample JERe
| °

;oit))

wi (a; 1)

w{3} ¢(aj’ ’U{3})

wi? (a; 017

withg(z; vlH)
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Example

-

Discrete AdaBoost Algorithm  ©

F

initialize ¢ =& Vn i, ,
2

for t=1:T Fl O

1 . |

fit the simple classifier ¢(z,v{") to the weighted dataset

i I

o (”)]I(d)(m(");v{t})?g (n))
e = ; >, g™ : q :[%7%7%7%’%7%]
{ty .1 18 1
wt = 5 log 7 o =11,1,1,-1,1, 1] £= &, = §
g™ = g e~y y w = %1og(1—1—%) = .5log(5) ~ 0.8
6
, [l 1 ¥ 1 1 1
retum  f(z) = sign( Y, wlt ¢(z;v1))) q:= [6 576v57 6765 6v5’ 6x/5]
2 =11,1,-1,-1,-1,-11 , _ 35 _ 1
¢ [ ) - 9 ’ ’ ] é = §:_\/5q = 10 1
w = Llog(:5) = .5log(9) ~ 1.1

10

f = [sign(.8 +1.1), sign(.8 + 1.1), sign(.8 — 1.1), sign(—.8 — 1.1), sign(.8 — 1.1), sign(—.8 — 1.1)]



application: Viola-Jones face detection

The first face detector
each feature is a weak learner, Haar features
e only compares the total intensity in rectangular pieces of the
image, computationally efficient
fast enough for real-time (object) detection

AdaBoost picks one feature at a time (label: face/no-face)

36

image credit: David Lowe



Boosting

f(m) — Z w{t} ¢(w, ’U{t}) a simple model, such as decision stump (decision tree with one node)

J({w®, vi8}) =37 L(y™, f(a™))

optimizing this cost is difficult given the form of f

1. find the best weak learner

ot wlth = argmin, , 33 L(y™, £ (M) + wé(z™; )

2. add it to the current model

f{’f}(a:) — f{tfl}(x(n)) + w{t}¢(w(n);v{t})

L(y, f(z)) = 3(y — f(z))’
L(y, f(z)) = e ¥®

37



Gradient boosting

fit the weak learner to the gradient of the cost

let £it} = [f{t} (W), ..., fit (zc(N))}T and true labels y = [y(l), .

ignoring the structure of f

if we use gradient descent to minimize the loss  f = arg ming L(f,y)

plty — plt-1} _ (1) gt}

S L(fty)

gradient vector
its role is similar to residual

write f as a sum of steps f — £{T} — gl0} _ 23;1 glt}

,,yuv)f

39



Gradient boosting

fit the weak learner to the gradient of the cost

et £it} = [f{t}(ac(l)),...,f{t}(m(N))}T and true labels y = [y(l),...,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ Zle glt}
|
s L(E Y, y)

gradient vector

) ) . its role is similar to residual
so far we treated f as a parameter vector of input size, to generalize:

fit the weak-learner to negative of the gradient  v1*} = arg min, o, — (—8)|3

we are fitting the gradient using L2 loss regardless of the original loss function |

v = argmin, 3°,((—g) — ¢(z™, v))?

40



Gradient boosting

initialize f{o} (x) using a base learner argmin, Zn L(y(n)’¢(w(n),v))

for t=1:T decide T using a validation set (early stopping)
calculate the gradient g(”)’{t} = WL(f{t_l}(af(n)),y(iE(n)))
fit a weak learner to negative of gradient using ’U{t} = arg minv Zn(g(n),{t} == gb(:c(”),v))2
find the optimal step size
Update the function f{t} (z) = f{t_l} (z) + ¢($7'v{t})

return f{T} (:U)

We can use different loss functions for example:

L(y, f(z)) = 3y — f(z))* = g=y— f(z)

41



Gradient tree boosting

appIy gradient boosting to CART (classification and regression trees)
initialize f{o} to predict a constant

for t=1:T decide T using a validation set (early stopping)

lculate th ti £ th dient p — _ 0 t—1
calculate e nega ive O e gra len r — 8fL(f{ },y)

fit a regression tree to X and produce regions Rl shallow trees of K = 4-8 leaf usually
500 C

work well as weak learners

9 9 RK
N

re-adjust predictions per region wy, = arg min,, Z ") eR L(y(n),f{tfl} (m(n)) + w)
z\" 7

update f{t}(:c) — fi-1 () + @ Zszl wil(z € Ry)

G laET f{T} (z) using a small learning rate here improves test error (shrinkage)

stochastic gradient boosting , o ,
a.k.a MART: multiple additive regression trees

e combines bootstrap and boosting
e use a subsample at each iteration above
e similar to stochastic gradient descent

XGBoost (extreme gradient boosting) is a widely
used variation, which has some additional tricks

42



Gradient tree boosting

recall the synthetic example:

Test Error

0.4

0.3

0.2

0.1

0.0

features z\™,..., 2" are samples from standard Gaussian _ . _
label y(m — (3", wgn)z > 0.34) Boosting with different
N=2000 training examples, (~1000+,~1000-) sized trees
Entropy (a.k.a deviance)
—— stumps for the trees loss

10 Node
100 Node
—— Adaboost

I Gradient tree boosting (using log-loss) works better than Adaboost

200

Number of Terms

300

400
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Gradient tree boosting

o Ro oM olo
HeolMlcEoldlolE e
.. E.Io BloNolRecallo
w!'] ﬁc Ne ""c)q;c)?e)
YR - = oMo Moo Mo

train loss: 0.269 test loss: 0.338

T ol cEclEc e

see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
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https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Summary: Ensemble Methods

e bagging (reduce variance)

independent models

use their average prediction

OOB validation instead of CV

Random forests: produce models with minimal correlation

o destroy interpretability of decision trees
o perform well in practice
o can fail if only a few relevant features exist (due to feature-sampling)

e boosting (reduces the bias of the weak learner)

models are added in steps

a single cost function is minimized

for exponential loss: interpret as re-weighting the instance (AdaBoost)
gradient boosting: fit the weak learner to the negative of the gradient
interpretation as L1 regularization for "weak learner"-selection

e random forests and (gradient) boosting generally perform very well
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