Gradient Computation & Automatic Differentiation

Reihaneh Rabbany

‘é T McGill

School of Computer Science

(winter 2022}

Learning objectives

using the chain rule to calculate the gradients
automatic differentiation

e forward mode
e reverse mode (backpropagation)

Landscape of the cost function

two layer MLP I ming y Y, Ly™, f(=™; W, V)

loss function depends on the task

W, V) =g(Wh(V
f(=z) g((a:)) this is a non-convex optimization problem

T 1
® @

W e RCXM
hidden

V € RMxD _
input vee I

https://losslandscape.com/gallery/

https://losslandscape.com/gallery/

Landscape of the cost function
two layer MLP

flx; W, V) = g(Wh(Vas))

there are exponentially many optima

given one optimum V*, W* we can create many more
with the same cost:

permute hidden units in each layer (M!)
for symmetric activations: negate input/ouput of a unit
for ReLU: rescale input/output weights attached to a unit

T 1
U1 U2 Jc
w [
v [XXEe=
I

miny,y Y, Ly™, f(z™; W,V))

loss function depends on the task

this is a non-convex optimization problem

ma ny Cr|t|ca | pOIntS (points where gradient is zero)

local min

local max saddle point

7SS
SN
J-/u,,"o,':,“‘:,:‘;‘\“\\\t\

these are not stable and SGD can escape

image credit: https://www.offconvex.org 5

Landscape of the cost function

there are exponentially many optima

given one optimum V*, W* we can create many more with the same cost:

e permute hidden units in each layer (M!)
e for symmetric activations: negate input/ouput of a unit
e for ReLU: rescale input/output weights attached to a unit this is a non-convex optimization problem

supported by empirical and theoretical results in a special settings

many more saddle points than local minima
number of local minima increases for lower costs

therefore most local optima are close to global optima

SUEICIAN use gradient descent methods

(covered earlier in the course) https://losslandscape.com/gallery/

https://losslandscape.com/gallery/

Examples

Jacobian matrix

f:R—R wehave the derivative 7 f(w) € R

f:RP” - R gradient is the vector of all partial derivatives
Vuf(w) = [go: f(W), -, 5oz f(w)]T € RP

f:RP - RM the Jacobian matrix of all partial derivatives

0
%f (w)
" 0f1(w) Of1(w) 7]
ow; "t Owp
J = ; . ; € RM*P
note that we use J also for cost function . . .
0 fm (w) 0 fm (w)
[0w 7 ") Owp _ J.. — 9fi(w)
) — " dw.

J

for all three case we may simply write a% (w) , where M,D will be clear from the context

what if W is a matrix? we assume it is reshaped into a vector for these calculations

Chain rule

forf:x+—2 and h:z—y where 2,9y,z € R

dy __ dy dz

dx dz dx

|

speed of change in y as we change z
speed of change in y as we change x

more generally = € RP,z € RY y e R®

@ — ()y Q in matrix form
Ox 0z Ox
C x D Jacobian |
C x M Jacobian

9y _ Oye Ozm
0zg 0z;m 024

T T
Y1 (P . Jo
Ees—=
21 z2 ves M
L1 L2 Tp
T T

Training a two layer network

i =g(Wh(Vz))

output ¥ Y2 Yo

we want to minimize . } % ;[
: , >]

JW, V)= Liy™,g(W h(V z)) hiddenunits (&) (2 ... (u
v DX N
input (%1 T3 ... Tp 1

i .0 7 0
need gradientwrtWandV: g 7 ov J for simplicity we drop the bias terms

simpler to write this for one instance (n)

0 0

so we will calculate 577 L, 577 L and recover

(9 ’ N () n A N I (9 ’ N (9 n AN
11

Gradient calculation

using the chain rule

6 L - 8L agc auC
OWem ™ 00c Ouec OWem

zm
depends on the activation function

similarly for V

3 8L a'gc 8Zm aqm Ty) Tp ,r
p— — R —— X w
Ld
depends on the activation function depends on the middle layer activation

12

Gradient calculation

using the chain rule

8 L _ 8L 83}0 8uc
OWem =~ 0Uc Oue OWem

depends on the activation function

, z
regression m

c=1
L(y,9) = 3lly — 9ll3
g=g(u)=u

combining the three terms above

9
Wy,

L(y, 9)

Ye — g(uc)

t

Ue = Zn]\le WC,mzm
Zm — h(Qm)

¢

qm — Zd—l Vm,dwd
T

Lq

L =(y— 2 we have seen this in linear regression lecture!
m g

more generally:

0
aVVc,m

L= (gc - yc)zm13

Gradient calculation

using the chain rule

6 L — aL 8:’)6 8'U/c

8Wc,m 83}@ 8“0 8Wc’m

depends on the activgtion function

binary classification |

scalar output C=1

L(y,9) = —ylogy — (1 — y)log(1 — 9)

0 N L 1—¢
HL0D) =4+ i

combining the three terms above
d

g = g(u)

gL =0 —y)zm

L(y,9)
Ye — g(uc)
t
Ue = an\le Wc,mzm
Zm = h(qm)
— (1+ev)" T
9y __ g)(l - A) dm = de:1 Vm dTd
ou T
Ld

looks familiar?
we had seen this in the logistic regression lecture

14

Gradient calculation L(y,9)

: : Ye = g(uc)
using the chaln rule
OL Oyr Oue _ \M
U = _ Wemz
8Wcm L = Zk 1 09, Ouc OWem c = 2m1 WemZm
|
Zm — h(Qm)
depends on the activgtion function 1\ _ D
’ Im = Dg-1 VmdZd
Zm, 1\
multiclass classification T
, d
Cis the number of classes
L(y,9) = - Zc Ye log ge y= g(u) = softmax(u) softmax takes a vector and produces a vector
N . .
oo 2 T T N et R 1-— k=c
o o Yr = Z—Z“‘ need to calculate the Jacobian a%yk = ykA(A)
' ‘ —YcYk k 7£ c

combining the three terms above

aWcm v —L = (gc T yc)zm

again, this is familiar (softmax regression lecture)

Gradient calculation

gradient wrt V: we already did this part

OL 07c 0zm Ogm

0 _ | OzZm
8Vm,d L o ZC BQC Oue Oqm an,d

logistic sigmoid
0de = Z (Fe —

= Zc(gc - yC

|
| =

depends on the middle layer activation

logistic function 0(¢m)(1 — o(gm))
hyperbolictan. 1 — tanh(g,,)?

RelLU {0 dn <0

1 ¢,>0

O-(%nr)(l o J(Qm))xd
zm(1 — z1,)xq =

for biases we simply assume the inputis 1. x

L(y,9)

Yo = g(u.)

te = Yt Wemzm
Zm = h(gm)

v, d'] Don 2 (9 — y™) 20 (1 - zfﬁb))xé")

=1

16

Gradient calculation

a common pattern

(9 L _ 8L 8@0 8’(1,@
aWQm o a'gc a'u:c aWc,m
oL |

Ou, input from below &y,

error from above

an7d L o ZC 8'!;0 8’U:c 8Zm aqm 8Vm,d
oL |

error from above

oqm input from below 4

L(y,9)
Ye — g(uc)

Zm = h(Qm)

T D

dm — Zd:1 Vm,dwd
T

Ld

17

Example classification

TS Iris dataset (D=2 features + 1 bias)
x x Bz §x;xx

ERRETIL L =16 hidden units

C=3 classes

x x
oy x X x
X§§¥X§§XXEXXXX x
x

cost is softmax-cross-entropy

\
n

Erma< 11)
A 1ax (1)

o IS
=
|—l

10

= - np.mean(np.sum(u*y, 1) - logsumexp(u)) 9

L(y,9)

g = softmax(u)

T

Ue = Zn]\le Wc,mzm

Zm = G(Qm)

1\
Zd 1 Vin,d%d

'I‘

Lq

19

Example classification

«
§ b
%X
. «
b
£
%

« x
SEIXEE L xEY xy x
< V%gi LD

13

return

Iris dataset (D=2 fea
= 16 hidden units
C=3 classes

dw, dv

tures + 1 bias)

d

Q
SefSl
‘ &~
—~~ {é\)
| |

Ny
SE/ 7;’

L(y,9)

y = softmax(u)

1\ M
uc::§:mzlvumnzm

Zm = U(Qm)
N
= Zé):l Vin,dTa

T

Ld

check your gradient function using finite difference
approximation that uses the cost function

1 scipy.optimize.check grad

20

Example: classification

Iris dataset (D=2 features + 1 bias)
M = 16 hidden units
C=3 classes

using GD for optimization

B W N

while Condition:
dw,

w
v

dv = gradient(x, y, w, V)
w - lr*dw
v - lr*dv

the resulting decision boundaries

X
i X
e X =
T
A x><% XX x
x ¥ X
X X
X X X X
XX % X
g ¥ X X x
X Xx % £ x X X
><><gs §><§ ¥~ X%
X X X
X X
X
x ¥ g X
XxX X X X
= X % g)(g §>< St
x X
2.0 2.5 3.0 3.5 4.0 4.5

21

Automating gradient computation

gradient computation is tedious and mechanical. Can we automate it?

using numerical differentiation?
approximates partial derivatives using finite difference g_j; > f(wﬂ‘)s_f(w)
needs multiple forward passes (for each input output pair)
can be slow and inaccurate
useful for black-box cost functions or checking the correctness of gradient functions

symbolic differentiation: symbolic calculation of derivatives
does not identify the computational procedure and reuse of values
automatic / algorithmic differentiation is what we want

write code that calculates various functions, e.g., the cost function
automatically produce (partial) derivatives e.g., gradients used in learning

23

Automatic differentiation

m use the chain rule + derivative of simple operations x, sin,

"

use a computational graph as a data structure (for storing the result of computation)
break down to atomic operations L = %(ww — y)2 9

build a graph with operations as internal
nodes and input variables as leaf nodes

there are two ways to use the computational graph to calculate derivatives

forward mode: start from the leafs and propagate derivatives upward

reverse mode:

1. first in a bottom-up (forward) pass calculate the values q,..., a4
2. in a top-down (backward) pass calculate the derivatives

this second procedure is called backpropagation when applied to neural networks

ax
az
as
a4
as
ae

ar

. £

|

8
B EH—E—=

24

Forward mode

y; = sin(w;z + wy)

Yy = cos(wix + wy)

suppose we want the derivative gﬂ where {
w1

we can calculate both ¥1:%2 and derivatives 9¥1 9% in 4 single forward pass

ow; Ow;
evaluation partial derivatives
@ CL-1 —0 we initialize these to identify which derivative we want
42— a =1 this means D = g—D
az = & ag = 0 e
as = as X as as = as X dg + ds X as
as = as + a1 ds = d4 + a1
ag = sin(as) dg = ds cos(as)
a7 = cos(as) a7y = —ds sin(as)

note that we get all partial derivatives 3—51 in one forward pass
25

Forward mode: computational graph

suppose we want the derivative 91 where

we can represent this computation using a graph

y; = sin(w;z + wy)
Yy = cos(wx + wy)

once the nodes up stream calculate their values and derivatives we may discard a node

e e.g,o0Nnce as,a; are obtained we can discard the values and partial derivatives for a4, ds, a1, a:

evaluation
ar = Wy
as = W1
as — &

as = az X as
as = a4 + ay
y1 = ag = sin(as)

y2 = a7 = cos(as)

y1 = ag = sin(as) @ Y2 = ay = cos(as)

a5:a4+a1

7 o

as = Wi ag = 26

Reverse mode

suppose we want the derivative 9% where ¥2 = cos(wiz + wy)

w1
first do a forward pass for evaluation

1) evaluation

ag :0

Cf7:1

W8 d; = —dysin(as) + dg cos(as)

as = as [Edlzdg,
a_2=a3a_4é hd3:a2a_4

a; = Wy then use these values to calculate partial derivatives in a backward pass

as = U1
as = &

as = a2 X as

as = a4 +a; 92— v dur |

Oas Oar Oas

= ag = sin(a Oyp _
yl 6 (5) Oay
= a7 = cosl(a Oy _ Oy»
y2 7 (5) ox = Oas
Oy2 _ Oy»
ow; ~ Oas
Oy __ Oyo
owy ~ Oaq

we get all partial derivatives 30 inone backward pass

o =1

gL =0
3(—703% = —sin(wiz + wy)
3% g% = — sin(wz + wy)
%g(—;i = —w; sin(wiz + wy)
%3(—;; = —zsin(w;z + wy)
gg gt_cf. = —sin(w;z + wo)

0ys

2) partial derivatives

ar
ag
as
as
as

az

ai

1 this means i = %
o]

0

—ar sin(as) + dg cos(as)

as

a4ao

asas3

as

27

Reverse mode: computational graph

suppose we want the derivative gﬂ where Y2 = cos(w1z + wp)
w1

we can represent this computation using a graph

_ _ y2 = a7 = cos(as)
1.in a forward pass we do evaluation and keep the values

2. use these values in the backward pass to get partial derivatives

1) evaluation
a; = wo as = a4 + a1 H
as = Wi
as =& as = as X as w halwo
as = az X as
as = a4 + aq 0y — w E hagzc

Yy = ag — sin(a5)

y2 = a7 = cos(as)

y1 = ag = sin(as)

9Ye Oy, Oa; _ - Oa;

a; = da; ~— da; da; ~— aja_a,

Forward vs Reverse mode

forward mode is more natural, easier to implement and requires less memory

a single forward pass calculates 9vt 9y
& P dw’) Bw
however, reverse mode is more efficient in calculating gradient Vuy = [25,..., 24"

this is more efficient if we have single output (cost) and many variables (weights)
for this reason, in training neural networks, reverse mode is used
the backward pass in the reverse mode is called backpropagation

many machine learning software implement autodiff:

® autograd (extends numpy)
® pytorch

® tensorflow

29

Improving optimization in deep learning

Initialization of parameters:

e random initialization (uniform or Gaussian) with small variance
= break the symmetry of hidden units

e small positive values for bias (so that input to ReLU is >0)

weight layer
weight layer

models that are sim p|er to o pti mize: this block is correcting for the residual error in the predictions of the
previous layers
X

e using ReLU activation
identity

o using skip-connection zi/*} = ReLU(W{*UReLU(... ReLU(W{tg{f)) 4 zith
e using batch-normalization (next)

Pretrain a (simpler) model on a (simpler) task and
fine-tune on a more difficult target setting (has many forms)

\Q—/ continuation methods in optimization

e gradually increase the difficulty of the optimization problem
\'/ ¢ good initialization for the next iteration

\/L// curriculum learning (similar idea)

l ¢ increase the number of "difficult" examples over time
' e similar to the way humans learn

v

image credit: Mobahi'16

30

Batch Normalization

e gradient descent: parameters in all layers are updated

e distribution of inputs to Iayerf changes

e each layer has to re-adjust ¢

e inefficient for very deep networks activation for the instance (n) at layer

N {g} (n) pith(n) 4
m m
BEEE normalize the input to each unit (m) of a layer £ {4}
unit m O'm

alternatively: apply the batch-norm to W{E}CE{K}

each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution)

introduce learnable parameters ReLU("y{E} BN(W{K} s) + 5{5})

mean and std per unit is calculated for the minibatch during the forward pass
we backpropagate through this normalization

at test time use the mean and std. from the whole training set

BN regularizes the model

the change in distribution of activations is not a big issue empirically
BN works so well because it makes the loss function smooth 31

Summary

optimization landscape in neural networks is special and not yet fully understood

¢ exponentially many local optima and saddle points
* most local minima are good
* calculate the gradients using backpropagation

automatic differentiation

e simplifies gradient calculation for complex models

* gradient descent becomes simpler to use

e forward mode is useful for calculating the jacobian of f : R — R” when P > Q
* reverse mode can be more efficientwhen @ > P

= backpropagation is reverse mode autodiff.

Better optimization in deep learning:

® Detter initialization
* models that are easier to optimize (using skip-connection, batch-norm, RelLU)

® pre-training and curriculum learning

32

