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intuition for model complexity and overfitting
regularization penalty (L1 & L2)
probabilistic interpretation
bias and variance trade-off

Learning objectives
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J(w) = (y −2
1 ∑n

(n) w x )T (n)
2

linear least squares (LLS)

 model f (x) =w =ŷ(n) w xT (n)

1 ×D D × 1∈ R
=ŷ Xw

N ×DN × 1 D × 1

J(w) = ∣∣y −2
1 Xw∣∣2

= (y −2
1 Xw) (y −T Xw)

 cost

 Optimization (y −∑n
(n) w x )x =T (n)

d
(n) 0 ∀d X (y −T Xw) = 0

 matrix notation

w =∗ (X X) X yT −1 T

D ×N N × 1D × 1 N ×D
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Linear regression
recall

what if linear fit is not the best?
        use nonlinear basis



Linear regression and logistic regression
is linear too simple? what if it's not a good fit?

Previously...

how to increase the model's expressiveness?

include new features from the domain
create new nonlinear features from the existing ones
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Nonlinear basis functions

replace original features in f (x) =w w x∑d d d

with nonlinear bases f (x) =w w ϕ (x)∑d d d

(Φ Φ)w =⊤ ∗ Φ y⊤linear least squares solution

Φ =

⎣⎢
⎢⎢⎢
⎡ ϕ (x ),1

(1)

ϕ (x ),1
(2)

⋮
ϕ (x ),1

(N)

ϕ (x ),2
(1)

ϕ (x ),2
(2)

⋮
ϕ (x ),2

(N)

⋯ ,
⋯ ,

⋱
⋯ ,

ϕ (x )D
(1)

ϕ (x )D
(2)

⋮
ϕ (x )D

(N) ⎦⎥
⎥⎥⎥
⎤

replacing X with Φ
a (nonlinear) feature

one instance

recall
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examples x ∈ R

polynomial bases

ϕ (x) =k xk

Gaussian bases

ϕ (x) =k e− s2
(x−μ )k

2
Sigmoid bases

ϕ (x) =k
1+e− s

x−μk
1

original input is scalar

Nonlinear basis functions

recall
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Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2

y =(n) sin(x ) +(n) cos( ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases

f(x ) =′ ϕ(x ) (Φ Φ) Φ y′ ⊤ ⊤ −1 ⊤

new instance
w

features evaluated for the new point

prediction for a new instance

found using LLS
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our fit to data using 10 Gaussian bases

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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using 50 bases!

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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cost              is zero and we have a "perfect" fit!J(w)
using 200, thinner bases (s=.1)

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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Generalization?

which one of these models performs better at test time?

D = 5

D = 10

D = 50

D = 200

lower training error
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Overfitting

which one of these models performs better at test time?

predictions of 4 models for the same input

x′

D = 5

D = 10

D = 50

D = 200
y

lowest test error

overfitting

underfitting
f(x )′
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An observation
when overfitting, we sometimes see large weights

dashed lines are w ϕ (x) ∀dd d

idea: penalize large parameter values

D = 10 D = 20D = 17
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Ridge regression

L2 regularized linear least squares regression:

J(w) = ∣∣Xw −2
1 y∣∣ +2

2 ∣∣w∣∣2
λ

2
2

(y −2
1 ∑n

(n) w x)⊤ 2
sum of squared error squared L2 norm of w

w w =T w∑d d
2

regularization parameter              controls the strength of regularizationλ > 0

a good practice is to not penalize the intercept λ(∣∣w∣∣ −2
2 w )0

2

also known as

is a hyper-parameter (use a validation set or cross-validation to pick the best value)λ
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Ridge regression
Visualizing the effect of regularization on the cost function

(y −2N
1 ∑x,y∈D w x) +⊤ 2 ∣∣w∣∣2

λ
2
2

example

w0

w1

is the new cost function convex?

w0 w0 18



Ridge regression

set the derivative to zero J(w) = (y −2
1 ∑x,y∈D w x) +⊤ 2 w w2

λ ⊤

∇J(w) = x(w x−∑x,y∈D
⊤ y) + λw

(X X +⊤ λI)w = X y⊤

w = (X X +⊤ λI) X y−1 ⊤

the only part different due to regularization

       makes it invertible, adds a small value to the diagonals 

we can have linearly dependent features
the solution will be unique!

X X⊤λI

when using gradient descent, this term reduces the
weights at each step (weight decay)

= X (Xw −⊤ y) + λw = 0

linear system of equations
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Example: polynomial bases

degree 2 (D=3)

polynomial bases

ϕ (x) =k xk

degree 4 (D=5) degree 9 (D=10)

Without regularization:
using D=10 we can perfectly fit the data (high test error)

20



with regularization:

fixed D=10, changing the amount of regularization

λ = 0 λ = .1 λ = 10

Example: polynomial bases
polynomial bases

ϕ (x) =k xk
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Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

w =MLE argmax p(y∣X,w)w

w =MLE argmax N (y∣w x,σ )w ∏x,y∈D
⊤ 2linear regression

w =MLE argmax Bernoulli(y;σ(w x))w ∏x,y∈D
⊤logistic regression

can we do Bayesian inference instead of maximum likelihood?

p(w∣y,X) ∝ p(w)p(y∣w,X)
posterior prior likelihood

recall
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Maximum a Posteriori (MAP)

MAP estimate w =MAP argmax p(w)p(y∣X,w)w

can we do Bayesian inference instead of maximum likelihood?

p(w∣y,X) ∝ p(w)p(y∣w,X)
posterior prior likelihood

in general, this is expensive, but there's a cheap compromise:

= argmax log p(y∣X,w) +w log p(w)
likelihood: original objective prior

all that is changing is the additional penalty on w
24



Gaussian Prior

MAP estimate w =MAP argmax log p(y∣X,w) +w log p(w)
prior

assume independent zero-mean Gaussians

log p(w) = log N (w ∣0, τ ) =∏
d=1
D

d
2 − +∑

d 2τ 2
w2 const.

does not depend on w
so it doesn't affect the optimization

lets call →
τ 2
1 λ

we get the L2 regularization penalty ∣∣w∣∣2
λ

2
2

smaller variance of the prior      gives larger regularizationτ 2 λ

25

N (μ,σ) = e
σ 2π
1 − ( )2

1
σ

x−μ 2



Laplace prior
another notable choice of prior is the Laplace distribution

image from here

minimizing negative log-likelihood log p(w ) =∑d d − ∣w ∣∑d β
1

d = − ∣∣w∣∣
β
1

1

L1 norm of w

p(w;β) = e2β
1 −

β

∣w∣

w

notice the peak around zero

J(w) ← J(w) + λ∣∣w∣∣1L1 regularization: also called lasso
(least absolute shrinkage and selection operator)
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https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions


 regularizationL  vs L1 2

regularization path shows how           change as we change{w }d λ

decreasing regularization coef.      λ

wd′

Lasso produces sparse weights (many are zero, rather than small)

red-line is the optimal       from cross-validationλ

wd

Ridge regressionLasso

D = 8

27

Example
D = 8D = 3



figures below show the constraint and the isocontours of J(w)
optimal solution with L1-regularization is more likely to have zero components

w1 w1

w2 wMLEwMLE

wMAP
wMAP

w2

∣∣w∣∣ ≤2
2 λ

~∣∣w∣∣ ≤1 λ
~

J(w)J(w) any convex cost function

28

 is equivalent to
min J(w) +w λ∣∣w∣∣p

p

min J(w)w subject to ∣∣w∣∣ ≤p
p λ

~ for an appropriate choice of λ
~

optional

 regularizationL  vs L1 2



Subset selection

penalizes the number of features with non-zero weights

J(w) + λ∣∣w∣∣ =0 J(w) + λ I(w =∑d d  0)

performs feature selection

a penalty of       for each feature to be included in the modelλ

closer to 0-normL norm0

p-norms with             induces sparsityp ≤ 1
p-norms with              are convex (easier to optimize)p ≥ 1
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w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2 ∣w ∣(∑d d 10

1 )10

optional



Subset selection

L1 regularization is a viable alternative to L0 regularization

p-norms with             induces sparsityp ≤ 1

p-norms with              are convex (easier to optimize)p ≥ 1

closer to 0-norm

optimizing this is a difficult combinatorial problem:

search over all         subsets2D

L norm0

optional

w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2
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∣w ∣(∑d d 10
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Adding       regularization
do not penalize the bias

L2

L2 penalty makes the optimization easier too!
w0

w0

w1

λ = 0

w1w1

λ = .01 λ = .1

note that the optimal         shrinksw1
    grad[1:] += lambdaa * w[1:]

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6 weight decay

32

example for logistic regression

similar pattern for linear regression, see example in the colab



Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

lim , lim[ w→ŵ− w−ŵ
f(w)−f( )ŵ

w→ŵ+ w−ŵ
f(w)−f( )ŵ ]∂f( ) =ŵ

if f is differentiable at          then sub-differential has one memberŵ f( )
dw
d ŵ

∂f( ) =ŵ {g ∈ R∣ f(w) > f( ) +ŵ g(w − )}ŵ

another expression for sub-differential

ŵ

optional
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Subgradient

subgradient is a vector of sub-derivatives

recall, gradient was the vector of partial derivatives

we can use sub-gradient with diminishing step-size for optimization

example subdifferential for f(w) = ∣w∣

∂f(0) = [−1, 1]

∂f(w = 0) = {sign(w)}

∂f( ) =ŵ {g ∈ R ∣f(w) >D f( ) +ŵ g (w −⊤ )}ŵ

subdifferential for functions of multiple variables

image credit: G. Gordon

optional
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Adding       regularizationL1

do not penalize the bias
using diminishing learning rate

w0

note that the optimal         becomes 0w1

    grad[1:] += lambdaa * np.sign(w[1:])

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

λ = .1 λ = 1λ = .1λ = .1

w0

λ = 0

w1

w0 w0 35



Regularization serves many purposes

w =∗ (X X) X yT −1 T

D ×N N × 1D × 1 N ×D

what if linear fit is not the best?
     use nonlinear basis

what if X XT is not invertible?
add a small value to the diagonals, a.k.a. regularize

How to avoid overfitting then? regularize

what if we want a sparse model?
     do feature selection and only keep important parameters with regularizing
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Data normalization

what if we scale the input features, using different factors =xd
~ (n) γ x ∀d,nd d

(n)

with regularization: ∣∣ ∣∣ =w~ 2  ∣∣w∣∣2
2 so the optimal w will be different!

if we have no regularization: =wd
~ w ∀d

γd

1
d

everything remains the same because: ∣∣Xw − y∣∣ =2
2 ∣∣ −X

~
w~ y∣∣2

2

features of different mean and variance will be penalized differently

μ =d x
N
1

d
(n)

σ =d
2 (x −

N−1
1

d
(n)

μ )d 2{normalization

makes sure all features have the same mean and variance x ←d

(n)
σd

x −μ
d

(n)
d

we saw that this also helps with the optimization!

optional
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Generalization and model complexity

simple models cannot fit the data

large training error due to underfitting

regularization can help us trade-off between bias and variance

we want to see how these two terms contribute to the generalization error

bias

expressive models can overfit the data

small training error
large test error due to overfitting

variance
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g(x)
= fix

ed
g(x)

= w +0
w x+1

w x +
2
2 w x3

3

g(x)
= w +0

w x1

D1

D2

D3

⋮

Generalization and model complexity

image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification.

example

the complex model varies more with the dataset
higher variance

it may not generalize well for this reason

the simple model is biased to a particular type of data
it underfits, but it has a low variance

higher bias

columns: a different type of model
rows: different datasets

g(x)

41

datasets are from the same distribution

x , y ∼(n) (n) p(x, y)
F (x) the best possible model



let          be our model based on the datasetf̂D

assume a true distribution p(x, y)

f(x) = E [y∣x]pbest prediction given L2 loss

assume that a dataset                                      is sampled fromD = {(x , y )}(n) (n)
n p(x, y)

what we care about is the generalization error (aka expected loss, expected risk)

E[( (x) −f̂D y) ]2

all blue items are random variables

decompose the generalization error to see the effect of bias and variance (for L2 loss)

(saw this in k-means and regression trees as well!)

Bias-variance decomposition: Setup
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Bias-variance decomposition

what we care about is the generalization error

E[( (x) −f̂D y) ]2

f(x) + ϵ

bias^2variance unavoidable
noise error

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

(x) +f̂D E [ (x)] −D f̂D E [ (x)]D f̂D add and subtract a term

= E[( (x) −f̂D E [ (x)] −D f̂D y + E [ (x)]) ]D f̂D
2

44

above simplifies to the following (the remaining terms are going to be zero)



Bias-variance decomposition

bias: how average over all datasets
differs from the regression function

variance: how change of dataset
affects the prediction

noise error: the error
even if we used  the
true model f(x)

the expected loss is decomposed to:

different models vary in their trade off
between error due to bias and variance

simple models: often more biased
complex models: often have more variance

image from here

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

45

http://snoek.ddns.net/~oliver/mysite/


image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification.

g(x)
= fix

ed

g(x)
= w +0

w x+1
w x +
2
2 w x3

3

g(x)
= w +0

w x1

D1

D2

D3

⋮

example

Bias vs. variance

distribution of error (cost) due to randomness of
dataset
we care about the expected error
bias causes a high error for all choices of dataset
higher variance also increases the expected error

image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. 46



x x

y

their average E[ ]f̂D

true model fmodels for different datasets f̂D

random datasets of size N=25 instances are not shown

using Gaussian bases

bias is the difference (in L2 norm)
between two curves

variance is the average difference (in
squared L2 norm) between these curves
and their average

Example: bias vs. variance
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x x

y

x x

y

using larger regularization penalty: higher bias - lower variance

the average fit is very good, despite high variance

model averaging: uses "average" prediction of

expressive models to prevent overfitting

side note

Example: bias vs. variance
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the lowest expected loss (test error) is somewhere between the two extremes

Example: bias vs. variance

increasing variance
increasing bias

in practice, how to decide which model to use?

E[ϵ ]2
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model complexity

pr
ed

ic
tio

n 
er

ro
r

error for random dataset

average training error

average test error

D

high variance in more
complex models means
that test and training error
can be very different

high bias in
simplistic models
means that training
error can be high

Effect on training and test error
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Summary

complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity

L1 & L2 regularization
probabilistic interpretation: different priors on weights
L1 produces sparse solutions (useful for feature selection)

bias-variance trade off:
formalizes the relation between

training error (bias)
complexity (variance) and
and the test error (bias + variance)

not so elegant beyond L2 loss
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