Applied Machine Learning

Machine Learning with Graphs

Reihaneh Rabbany

COMP 551 (winter 2021)

Learning objectives

- How to represent graph structured data
- Unsupervised learning with graphs
 - Community detection (clustering)
- Supervised learning with graphs
 - Node classification

Motivation

Our world is **complex** and analyzing interconnected data provides the much needed tools to study today's phenomena (e.g., online societies) and enables us to address the world's emerging problems (e.g., covid-19)

Complex Systems

- consists of many interconnected parts
- characterized by time-dependent interactions among their parts
- not an aggregation of their separate parts
- when looked at as a whole gives non trivial insights
- often interactions change states of parts, and the states of the parts change the networks of interactions

Motivation: applications

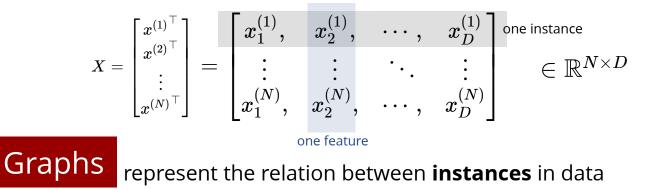
natural sciences: connections between atoms, molecules, cells, organisms and even the cosmic web

from a demo of galaxy networks

applied sciences: looking at compex system, as a whole, gives us non trivial insights and is necessary to understand these systems in many applications, e.e. in Medicine, law, even culinary (check this flavor network)

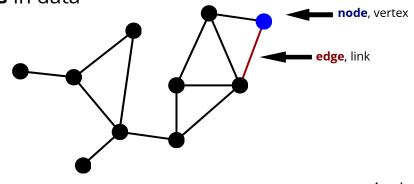
Representing Interconnected Data

we used independent **instances** as data in this course:

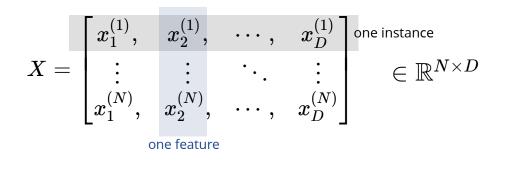


the default representation

• Variations: simple, weighted, directed, signed, multi-edges and multi-type nodes (heterogenous), attributed (nodes and or edges have feature vectors), dynamic (sequence of graphs), multilayer networks (multi-view), hypergraphs (beyond pairwise relations), etc.



Features Matrix node features



Adjacency Matrix

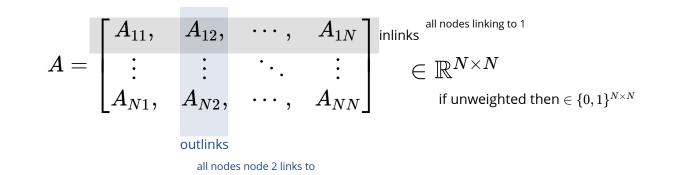
connections between nodes

marginals of A are called **degree** $d_i = \sum_j A_{ij}$ $A = \begin{bmatrix} A_{11}, & A_{12}, & \cdots, & A_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1}, & A_{N2}, & \cdots, & A_{NN} \end{bmatrix}$ inlinks ^{all nodes linking to 1} $\in \mathbb{R}^{N \times N}$ if unweighted then $\in \{0, 1\}^{N \times N}$ outlinks all nodes node 2 links to

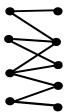
Real world graphs are sparse (have lots of zeros) and we use sparse matrix representations to store them (only store non-zero values)

Adjacency Matrix

- person & friendship
- paper & citation
- cities & train tracks
- protiens & binding



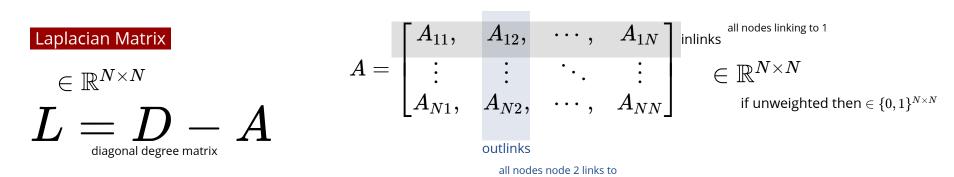
Incidence Matrix



- often used to represent **bipartite** graphs
- actor & movies
- authors & papers
- metabolites & reactions
- words & documents
- two possible one mode projections: B^TB, and BB^T

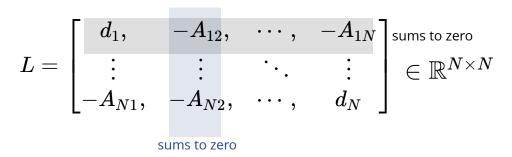
 $B = egin{bmatrix} A_{11}, & A_{12}, & \cdots, & A_{1M} \\ dots & dots & \ddots & dots \\ A_{N1}, & A_{N2}, & \cdots, & A_{NM} \end{bmatrix}$ edges, or second set of nodes $\in \mathbb{R}^{N imes M}$ if unweighted then $\in \{0, 1\}^{N imes M}$

all nodes edge 2 links



Eigenvalues of Graph laplacian tells us about the connectivity of the graph

- e.g. number of zero eigenvalues is the number of connected components
- second-smallest eigenvalue of L is called Algebraic connectivity or Fiedler value
- Signs of values in Fiedler eigenvector (associated to Fiedler eigenvalue) tell us how to partition the graph into two components by breaking least edges, i.e. minimum cut solution



Adjacency Matrix

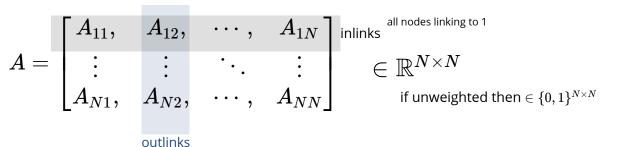
connections between nodes

marginals of A are called **degree**

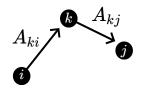
 $d_i = \sum_j A_{ij}$

Powers of A

- A^2 : # of walks with length two
 - If undirected, number of common neighbors
 - what is A_{ii}^2 ?
- A^3 : # of walks with length three
 - what is A_{ii}^3 ?
 - if undirected, $Tr(A^3)/6$ gives the number of triangles
 - we compute number of triangles more effectively from eigenvalues of A as $\frac{1}{6} \sum_{i} \lambda_{i}^{3}$, since if λ is eigenvalue of A then λ^{p} is eigenvalue of A^{p}
 - real world graphs usually have a lot of triangles, e.g. friends of friends are friends

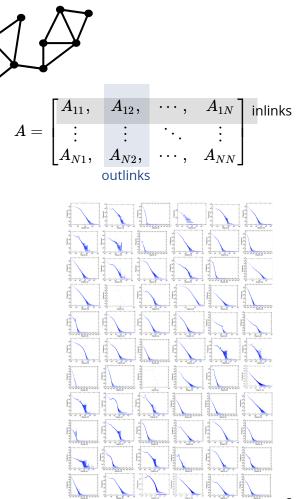


all nodes node 2 links to



Degree distribution

- marginals of *A* are called **degree**
 - $d_i = \sum_j A_{ij}$
 - **if directed**, $(A_{ij} = 1 \text{ there is an edge from node } j \text{ to } i)$ We have
 - column-wise and row-wise marginals as indegree and out degree of nodes
 - $d_i^{in} = \sum_j A_{ij}$, and $d_i^{out} = \sum_j A_{ji}$
- $\sum_i \sum_j A_{ij}$
 - total number of edges (if directed), or twice that if undirected
- **degree distribution:** how many nodes of degree *k* are in the graph
 - is often heavy tailed in real world networks (there are few nodes with very high degree & many with very small degree)
- degree distribution is plotted in log-log and a line could give a goof fit
 - $ln(p(d)) = lpha ln(d) + ln(c) \Rightarrow p(d) = cd^{-lpha}$: powerlaw distribution
- often referred to as being **scale-free** since
 - $p(\lambda d) = \lambda^{-lpha} c d^{-lpha}$

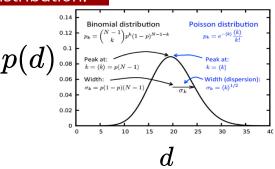


Real-world v.s. random graphs

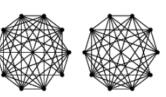
Erdös-Rényi Model (ER) graphs

- basis of random graph theory
- simple model that results in small-world graphs
- parameters: ER(n, p) or ER(n, m)
 - n: number of nodes
 - p: probability of an edge between any two nodes
 - m: number of edges
- generation: all edges are equally likely so toss n(n-1)/2 coins

Degree distribution:



compare with real world graphs which have a heavy tail



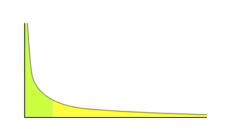
Powerlaws

a common distribution

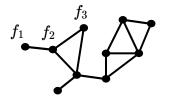
- Income follow a Pareto distribution
 - few individuals earned most of the money & majority earned small amounts
 - in the US 1% of the population earns a disproportionate 15% of the total US income
 - 80/20 rule (Pareto principle): a general rule of thumb
 - $^{\rm O}$ $\,$ e.g. 20 percent of the code has 80 percent of the errors
- Zipf's law
 - distribution of words ranked by their frequency in a random text corpus is approximated by a power-law distribution
 - the second item occurs approximately 1/2 as often as the first, and the third item 1/3 as often as the first, and so on

preferential attachment which results in scale-free graphs

• node is connected to existing nodes with $p(i) \propto d_i$



Spectral clustering



consider function f that maps vertices to a value

$$f = (f_1, f_2, \dots f_N) \in \mathbb{R}^N \Rightarrow oldsymbol{f}^ op L f = rac{1}{2} \sum_{ij} A_{ij} (f_i - f_j)^2$$

measures how much the value of f is smooth over edges, i.e. the difference of values for connecting nodes

How to cluster? Find *f* that give smoothest results, i.e, minimizes this

$$f_i \in \{+1,-1\} ext{ and } \sum_i f_i = 0$$

relaxed f.

Courant Fisher Minmax Theorem

$$f_i \in \mathbb{R} ext{ and } \sum_i f_i^2 = N \Rightarrow \min f^ op L f = N \lambda_1$$

- second smallest eigenvalue ⇒ sparsest cut
- signs of corresponding **eigenvector** \Rightarrow cluster assignments

more than 2 clusters? use k-means on top k eigenvectors (each node is represented with k features)

6.1

read more here

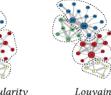
Clustering Graphs

Better choices for graphs:

- modularity optimization
 - number of links between them is more than chance, examples: FastModularity, Louvain
- random walk based ۲
- Within them a random walk is more likely to trap, e.g. Walktrap
- compression based ۲
 - Coding gives efficient compression of any random walk, e.g. Infomap

O = 0.445

- centroid based
 - follow their closest leader e.g. TopLeader



Walktrap O = 0.44

Infomap 0 = .434

Clustering Graphs

- Modularity optimization
 - number of links between them is more than chance
 - e_{ij} : fraction of edges between cluster i and j, and $a_i = \sum_j e_{ij}$

$$Q = \sum_i (e_{ii} - a_i^2) = Tr(e) - \frac{||e^2||_1}{||e^2||_1 - \sum_{ii} e_{ii}^2}$$

optimize with an agglomerative hierarchical clustering

• merge two cluster that give the highest gain in Q

$$\Delta Q = 2(e_{ij}-a_ia_j)$$

FastModularity

uses this with heap based data structure \Rightarrow O(m log n)

$$e = \begin{bmatrix} 0.71 & 0.35 & 0.06 & 0.\\ 0.22 & 0.3 & 0.22 & 0.\\ 0.065 & 0.35 & 0.59 & 0.4\\ 0. & 0. & 0.12 & 0.6 \end{bmatrix}$$

Clustering Graphs

Facebook

DONALD BLAK

HULKOR ROBERT BRU

IN AMERIC

R PAR

Yeast protein protein interaction networks

Attributed Graphs

Individual characteristics or activity (attributes) & relations (graph)

Interplay between attributes and relations, a positive feedback loop derived by two social theories:

- social selection
 - similarity of individuals' characteristics motivates them to form relations
- social influence
 - characteristics of individuals may be affected by the characteristics of their relations
 - your neighbours' attributes can reveal yours

inductive bias: homophily

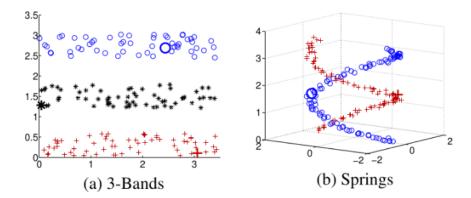
birds of the same feather flock together

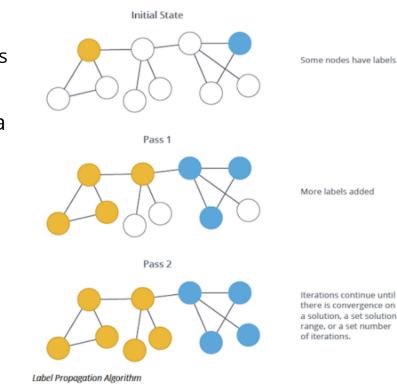
Node classification

Label Propagation Algorithm

label = mean (scalar) & mode (categorical) of your neighbors

proposed for semi-supervised classification of iid data by defining a fully connected distance graph



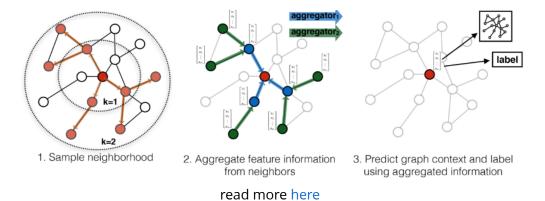


Node classification

- Unsupervised learning
 - clustering, only graph is given, classes/clusters are not predefined
- Supervised learning
 - classifying, input is graph and labels on all nodes
 - You mask some nodes (labels and their connections) for training [inductive]
 - You mask some nodes (only labels) for training [transductive]
- Semi-supervised learning
 - input is graph and labels on some nodes
 - You mask some node labels for training (seeing the whole graph: transductive)
- Active learning
 - Input is graph and a budget that determines how many nodes you can query for labels
 - labels come in sequence and can be queried based on the current set

Semi-Supervised Node classification

- classic methods
 - label propagation & belief propagation
- recent end-to-end methods (feature smoothing)
 - GCN and variants, which use a classification loss
- embedding based
 - unsupervised embedding extraction (e.g. node2vec) then apply a classifier



Summary

- graphs are everywhere
- real world graphs have special patterns
- graphs are represented with matrices
- graph clustering partitions the nodes in a graph
- node classification labels the node for which label is missing
- there are other tasks: link prediction, graph classification, ranking, etc.