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About this tutorial

» This is not an comprehensive review of Probability Theory.
» The focus is on the subset related to COMP 551.
» More references can be found at the end of the slides.

» Also please shoot me an email if you find any typos or
mistakes!

2/40



Outline

Probability Theory
Elements of Probability Theory
Random Variables
Two Random Variables
Multiple Random Variables

3/40



Outline

Probability Theory
Elements of Probability Theory

4/40



Why Probability Theory?

» There are lots of uncertainty in the world.
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Why Probability Theory?

» There are lots of uncertainty in the world.

» Probability theory provides a consistent framework for
quantification and manipulation of uncertainty.
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Sample Space

» Sample space, denoted as €2, is the set of all possible
outcomes of an experiment.

» Observations, denoted as w € €, are points in the sample
space. They are also called sampled outcomes.

» Events, denoted as A € €2, are subsets of the sample space.
Note that a set of events is also an event.
» Example: Consider the experiment of flipping a coin twice:
> Q= {HH,HT,TH, TT}.
» The sampled outcomes can be w = HH or w = HT.
> One possible event is A = {HH, TT}, which corresponds to
the event of both flips being the same.
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Axioms of Probability Theory

P A probability measure is a function that maps events to the
interval [0,1], i.e. P: A —[0,1].
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Axioms of Probability Theory

P A probability measure is a function that maps events to the
interval [0,1], i.e. P: A —[0,1].
» The probability measure satisfies the following properties:

1. P(A) > 0 for all A
2. P(Q) = 1.
3. If Ay, Ag, ... are disjoint events (A; N A; = 0), then

P (U A;) = Z P(A;).

These three properties are called the axioms of probability
theory.
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Properties of the Probability Measure

» Properties:
> If AC B, then P(A) < P(B).
> P(AN B) < min(P(A), P(B)).
» Union Bound:

P(AUB) < P(A)+ P(B)

» Law of Total Probability: If Aq,..., As are disjoint events
such that |Ji_, A; = Q, then

» For more see page 1 of CS5229's Probability Theory Review.
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Joint and Conditional Probabilities

» Joint probability of events A and B, denoted as P(A, B), is
the probability that both events will occur

P(A,B) = P(AN B).
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Joint and Conditional Probabilities

» Joint probability of events A and B, denoted as P(A, B), is
the probability that both events will occur

P(A,B) = P(AN B).

» Conditional probability of A given B, denoted as P(A|B), is
the probability that A will occur given B has already occurred.

» Assuming P(B) > 0, it is defined as

P(A, B)
P(B)

P(A|B) =

» This leads to the product rule in probability theory:

P(A,B) = P(A|B)P(B) = P(B|A)P(A).

9/40



Independence

» Events A and B are independent if and only if
P(A,B) = P(A)P(B),
or equivalently (using the product rule),
P(A|B) = P(A).

Intuitively, this says that observing B does not have any effect
on the probability of A.
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Independence

» Events A and B are independent if and only if
P(A,B) = P(A)P(B),
or equivalently (using the product rule),
P(A|B) = P(A).

Intuitively, this says that observing B does not have any effect
on the probability of A.

> Also events A and B are conditionally independent given
event C if and only if

P(A, B|C) = P(A|C)P(B|C).
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Random Variables
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Random Variables

>

>

Sample space is composed of events as five consequent coin
tosses.

But how do we go from these events to numerical outcomes
that we actually care about? For example the number of
heads?

A random variable is a mapping X : Q — R which assigns a
real number X(w) to each observed outcome w € Q in the
sample space.

While the random variable is denoted with upper case letters
X(w) (or simply X), the values it can take are denoted with
lower case ones x.

Example: Consider the experiment of flipping a coin 5 times.

X(w) can be a counter that counts the number of heads. In
this case if the outcome is wg = HTTTH, then X(wp) = 2.
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Discrete and Continuous Random Variables

» Discrete random variables

» Can take only a finite number of values

» Example: Number of heads in the sequence of 5 coin tosses

» Here, the probability of the set associated with a random
variable X taking on some specific value k is:

P(X = k)= P{w : X(w) = k}).

13/40



Discrete and Continuous Random Variables

» Discrete random variables

» Can take only a finite number of values

» Example: Number of heads in the sequence of 5 coin tosses

» Here, the probability of the set associated with a random
variable X taking on some specific value k is:

P(X = k)= P{w : X(w) = k}).

» Continuous random variables
» Can take on a infinite number of possible values
» Example: Time of bus arrivals in a bus station
» Here, the probability of the set associated with a random

variable X taking on some specific value between a and b
(a < b)is:

P(a< X < b) = P({w:a< X(w) < b}).
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Probability Mass Functions

» When X is discrete random variable, we use probability mass
functions to assign probabilities to random variables taking
certain values.
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Probability Mass Functions

» When X is discrete random variable, we use probability mass
functions to assign probabilities to random variables taking
certain values.

» The probability mass function (PMF) is a function
px : R — [0, 1] such that

» Intuitively, it is the probability that the random variable X(w)
will take the value x.
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Probability Mass Functions

» Example: If X(w) is a random variable indicating the number
of H occurrences in 2 coin tosses, we have

px(2) = P(X =2) =

1
4
1
px(1) = P(X =1) =3,
1
4

px(0) = P(X =0) =
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Probability Mass Functions

» Example: If X(w) is a random variable indicating the number
of H occurrences in 2 coin tosses, we have

px(2) = P(X =2) =

1
4
1
px(1) = P(X =1) =3,
1
4

px(0) = P(X =0) =

» For the properties PMFs see page 3 of C5229's Probability
Theory Review.
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Probability Density Functions

» When X is continuous random variable, we use probability
density functions to assign probabilities to random variables
taking certain values in a specific interval.
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Probability Density Functions

» When X is continuous random variable, we use probability
density functions to assign probabilities to random variables
taking certain values in a specific interval.

» The probability density function (PDF) is a function
fx : R — R such that

x+Ax
/ fx(x)dx = P(x < X < x 4 Ax).

» It is important to note that fx(x) is not equal to P(X = x),
i.e.
fx(x) # P(X = x).
It is its integral over an interval that gives the probability.
» In fact, fx(x) can even be greater than 1 for certain x values.
However, it cannot be negative.
» For the properties PDFs see page 4 of C5229's Probability

Theory Review.
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Expectation

» The expectation (expected value or mean) of a
» discrete random variable X is defined as:

EX]= Y xpx(x),

x€Val(X)
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x€Val(X)

» continuous random variable Y defined as:

BY] = [ v
P Intuitively, the expectation of random variable can be thought
of as a “weighted average” of the values it can take, where

the weights are px(x) or fy(y).
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Expectation

» The expectation (expected value or mean) of a
» discrete random variable X is defined as:

EX]= Y xpx(x),

x€Val(X)

» continuous random variable Y defined as:

BY] = [ v
P Intuitively, the expectation of random variable can be thought
of as a “weighted average” of the values it can take, where

the weights are px(x) or fy(y).

» For the properties expectations see page 4 of C5229's
Probability Theory Review.

17/40


http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-prob.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-prob.pdf

Variance

» The variance of a (discrete or continuous) random variable is
defined as:
Var[X] = E[(X — E[X])?].
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Variance

» The variance of a (discrete or continuous) random variable is
defined as:
Var[X] = E[(X — E[X])?].

» With several steps of derivation, it can also be written as

Var[X] = E[X?] — E[X]?.

> Intuitively, it is a measure of how concentrated the
distribution of a random variables is around its mean.

» For the properties variance see page 4 of C5229's Probability
Theory Review.
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Common Random Variables

» Below are the distributions, means and variances of some
common random variables®:

Distribution PDF or PMF Mean | Variance
. R ifx=1

Bernoulli(p) Il)_ p, ifz=0. p p(1—p)

Binomial(n, p) (Z) PPl —p)*Ffor0<k<n | np npq

Geometric(p) p(1—p)Ft fork=1,2,... 119 11;;21)

Poisson(\) e \*/z! fork=1,2,... A A

Uniform(a,b) ﬁ Vz € (a,b) "Tb (b;;)

P
Gaussian(p,0?) | — 1211_67( 2o o o?
Exponential(\) | Ae™% £>0,A>0 1 =

!Taken from CS229's Probability Theory Review.
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» Below are the distributions, means and variances of some
common random variables®:

Distribution PDF or PMF Mean | Variance
. R ifx=1
Bernoulli(p) Il)— p, ifz=0. D p(1—p)
Binomial(n, p) (Z) PPl —p)*Ffor0<k<n | np npq
Geometric(p) p(1—p)Ft fork=1,2,... 119 11;;21)
Poisson(\) e \*/z! fork=1,2,... A A
Uniform(a,b) ﬁ Vz € (a,b) "Tb (b;;)
P
Gaussian(p,0?) | — 1211_67( 2o o o?
Exponential(\) | Ae™% £>0,A>0 1 =
» Do not try to memorize them, they are put here for reference.

!Taken from CS229's Probability Theory Review.
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Gaussian Distribution

» Among these distributions the Gaussian distribution (also
known as the Normal distribution) is particularly important as
it shows up everywhere.
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Gaussian Distribution

» Among these distributions the Gaussian distribution (also
known as the Normal distribution) is particularly important as
it shows up everywhere.

» It has the following PDF:

1 _x=w)?

px(x) = N(x|p,0) =

and the following shape?:

2Taken from Wikipedia.
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Two Random Variables

» Thus far, we have considered single random variables. In many
situations, however, there may be more than one quantity that
we are interested in knowing during a random experiment.
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Two Random Variables

» Thus far, we have considered single random variables. In many
situations, however, there may be more than one quantity that
we are interested in knowing during a random experiment.

» For instance, in an experiment where we flip a coin ten times,
we may care about both X(w) = “the number of heads that
come up” as well as Y(w) = “the length of the longest run of
consecutive heads”.

» In this part, we consider the setting of two random variables.
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Joint and Marginal Probability Mass Functions

» When X and Y are discrete random variables, we use joint
PMFs to assign probabilities to random variables taking
certain values.
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Joint and Marginal Probability Mass Functions

» When X and Y are discrete random variables, we use joint
PMFs to assign probabilities to random variables taking
certain values.

» The joint PMF is a function pxy : R x R — [0, 1] such that

pXY(Xay) = P(szv Y:y)

» Intuitively, it is the probability that the random variables X (w)
and Y(w) will take the values x and y.
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Joint and Marginal Probability Mass Functions...

» How does the joint PMF relate to PMFs for each variable
separately? It turns out that

px(x) =D pxv(x.y), py(y) =) pxv(x.y).
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Joint and Marginal Probability Mass Functions...

» How does the joint PMF relate to PMFs for each variable
separately? It turns out that

px(x) =D pxv(x.y), py(y) =) pxv(x.y).

» px(x) and py(y) are referred to marginal PMFs of X and
Y, respectively.

» This summation is referred to as marginalization.
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Joint and Marginal Probability Density Functions

» When X and Y are continuous random variables, we use
probability density functions to assign probabilities to random
variables taking certain values in specific intervals.
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Joint and Marginal Probability Density Functions

» When X and Y are continuous random variables, we use
probability density functions to assign probabilities to random
variables taking certain values in specific intervals.

» The joint PDF is a function fxy : R x R — R such that

x+Ax py+Ay
/ / fxy (x, y)dxdy
x y

=Px<X<x+Ax,y <Y <y+Ay).

P It is important to note again that
fxy(x,y) # P(X =x,Y =y).

It is its integral over the intervals that gives the probability.

» In fact, fxy(x,y) can even be greater than 1 for certain x and
vy values. However, it cannot be negative.
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Joint and Marginal Probability Density Functions...

» Analogous to the discrete case we have:

o0

fx(x) = /OO fxy(x,y)dy, fy(y)= / fxy(x,y)dx.
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Joint and Marginal Probability Density Functions...

» Analogous to the discrete case we have:

o0 o0

fx(x) = / fxy(x,y)dy, fy(y)= / fxy(x,y)dx.

—00 —00

» fx(x) and fy(y) are referred to marginal PDFs of X and Y,

respectively.
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Conditional Distributions

» In the discrete case, the conditional PMF of Y given X is

defined as:
pxy (X, y)

pY|X(y|X) = PX(X)

Y

assuming that px(x) > 0.
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Conditional Distributions

» In the discrete case, the conditional PMF of Y given X is

defined as:
pxy (X, y)

px(x)

Y

PY|X(Y|X) =

assuming that px(x) > 0.

» For the continuous case see page 8 of C5229's Probability
Theory Review, but it has the same form.
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Bayes' Rule

» A useful formula that often arises when trying to derive an
expression for the conditional probability of one event given
the other is Bayes’ Rule.
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expression for the conditional probability of one event given
the other is Bayes’ Rule.

» In the case of discrete random variables X and Y:

~ pxjy(xly)py(y)
pY|X(y|X) - PX(X)

Likelihood x Prior
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(Posterior o Likelihood x Prior).

Posterior =
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Bayes' Rule

> A useful formula that often arises when trying to derive an
expression for the conditional probability of one event given
the other is Bayes’ Rule.

» In the case of discrete random variables X and Y:

~ pxjy(xly)py(y)
pY|X(y|X) - PX(X)

Likelihood x Prior
Evidence

(Posterior o Likelihood x Prior).

Posterior =

» The same thing can be done with PDFs in the case of
continuous random variables.
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Independence

» Two discrete random variables X and Y are independent if

pxy (x,y) = px(x)py(y),

for all x € Val(X) and y € Val(Y).
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Independence

» Two discrete random variables X and Y are independent if

pxy (x,y) = px(x)py(y),

for all x € Val(X) and y € Val(Y).

» For the continuous case see page 8 of C5229’s Probability
Theory Review, but it has the same form.

» Intuitively, two random variables are independent if knowing
the value of one variable will never affect the probability of
knowing the other.
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Expectation and Covariance

» Suppose that we have two discrete random variables X and
Y, and g(.,.) is a function of these two random variables.
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Expectation and Covariance

» Suppose that we have two discrete random variables X and
Y, and g(.,.) is a function of these two random variables.

> Then the expected value of g is defined in the following way:

Eg(X, V)= > > &ly)pxy(xy)

x€Val(X) yeVal(Y)

» For continuous random variables X and Y the analogous
expression is:

Blg(x. )] = | h / " gy )y (x, ) ddy.
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Expectation and Covariance...

» Using the expectation definition in the previous slide, the
covariance of two random variables X and Y is defined as:

Cov[X, Y] = E[(X — E[X])(Y — E[Y])].
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» Using the expectation definition in the previous slide, the
covariance of two random variables X and Y is defined as:

Cov[X, Y] = E[(X — E[X])(Y — E[Y])].

> With a few steps of derivation it can also be written as:

Cov[X, Y] = E[XY] — E[X]E[Y].
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Cov[X, Y] = E[XY] — E[X]E[Y].

» When Cov[X, Y] =0, we say that X and Y are uncorrelated.
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> With a few steps of derivation it can also be written as:

Cov[X, Y] = E[XY] — E[X]E[Y].

» When Cov[X, Y] =0, we say that X and Y are uncorrelated.

» When X and Y are independent, then Cov[X, Y] =0.
However, the opposite is not always true.
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Expectation and Covariance...

» Using the expectation definition in the previous slide, the
covariance of two random variables X and Y is defined as:

Cov[X, Y] = E[(X — E[X])(Y — E[Y])].

> With a few steps of derivation it can also be written as:

Cov[X, Y] = E[XY] — E[X]E[Y].

» When Cov[X, Y] =0, we say that X and Y are uncorrelated.

» When X and Y are independent, then Cov[X, Y] =0.
However, the opposite is not always true.

» For the properties covariance see page 9 of C5229's
Probability Theory Review.
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Outline

Probability Theory

Multiple Random Variables
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Multiple Random Variables

» The notions and ideas introduced in the previous section can
be generalized to more than two random variables.
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Multiple Random Variables

» The notions and ideas introduced in the previous section can
be generalized to more than two random variables.

» In particular, suppose that we have n random variables

Xi(w), Xa(w), ..., Xp(w).
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Example of Generalization

» In the case of having two discrete random variables X and Y,
the joint PMF was defined as:

PXY(Xa)/):P(X:XaY:)/),

and marginalization was done as follows:

px(x) =D pxv(x,y), pr(y) =Y pxv(x.y).
y X
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PXY(Xa)/):P(X:XaY:)/),

and marginalization was done as follows:

px(x) =D pxv(x,y), pr(y) =Y pxv(x.y).
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» In the case of having n discrete random variables
X1, X2, ..., Xy, the joint PMF becomes:
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and marginalization becomes:
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Example of Generalization

» In the case of having two discrete random variables X and Y,
the joint PMF was defined as:

PXY(Xa)/):P(X:XaY:)/),

and marginalization was done as follows:

px(x) =D pxv(x,y), pr(y) =Y pxv(x.y).
y X

» In the case of having n discrete random variables
X1, X2, ..., Xy, the joint PMF becomes:

Px. X0 Xo (X1, X2, ..o, Xn) = P(X1 = x1, X2 = x2,..., Xy = Xp),

and marginalization becomes:

Px, (x1) E ng Xo(X2, -0y Xn).
X2,X35.445X
Note that the same can be done for x, ..., x,.
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Chain Rule and Mutual Independence

» From the definition of conditional probabilities, one can show
that:

n
PX1 X0 X (X15 X2, -5 Xn) = px; (x1) H px; (Xi| X1, ..., xi—1)-
i—2

This is called the chain rule in probability theory.
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» From the definition of conditional probabilities, one can show
that:

n
P X X (X1 X2, -+ Xn) = pxy (1) [ [ o (xilxas -+ %)
i=2
This is called the chain rule in probability theory.

» In this way, a joint probability is written in terms of
conditional probabilities.

35/40



Chain Rule and Mutual Independence

» From the definition of conditional probabilities, one can show
that:

n
P X X (X1 X2, -+ Xn) = pxy (1) [ [ o (xilxas -+ %)
i=2
This is called the chain rule in probability theory.

» In this way, a joint probability is written in terms of
conditional probabilities.

» We say that X1, X», ..., X, are mutually independent if:

n
PX1 X X (X1, X2, + + + 3 Xn) = H px; (Xi)-
i=1
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Independent and Identically Distributed (11D)

» A set of random variables are independent and identically
distributed (i.i.d.) if
» they are sampled from the same distribution
» and are mutually independent

36/40



Independent and Identically Distributed (11D)

» A set of random variables are independent and identically
distributed (i.i.d.) if
» they are sampled from the same distribution
» and are mutually independent.
» Example: Consecutive coin flips are assumed to be i.i.d.:

» The probability of H is the same for each flip.
» One flip's outcome doesn't affect the others.
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Random Vectors

» When working with multiple random variables Xi, X5, ..., X},
it is often convenient to put them in a vector:

X1
X2
X=.
Xn
This resulting vector is called a random vector (a mapping
X:Q—R").
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Random Vectors

» When working with multiple random variables Xi, X5, ..., X},
it is often convenient to put them in a vector:

X1
X2
X=1.
Xn
This resulting vector is called a random vector (a mapping
X:Q—R").
P It should be noted that this is just another notation, and
nothing more.
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Covariance Matrix

» For a given random vector X, its covariance matrix X is an
n X n square matrix and is defined as:

3 = E[(X — E[X])(X —E[X])"].
And its (7, j)th entry is

E,’j = COV[X,', )<J]
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Covariance Matrix

» For a given random vector X, its covariance matrix X is an
n X n square matrix and is defined as:

3 = E[(X — E[X])(X —E[X])"].
And its (7, j)th entry is

E,’j = COV[X,', )<J]

> With a few steps of derivation it can also be written as:

> =E[XX "] - E[X]E[X]".

» It should be noted that X is positive semidefinite and
symmetric.
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Multivariate Gaussian Distribution

» A particularly important example of a probability distribution
over random vectors is the multivariate Gaussian (normal)
distribution.
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» A particularly important example of a probability distribution
over random vectors is the multivariate Gaussian (normal)
distribution.

> |t is a generalization of the univariate Guassian to higher
dimensions.
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Multivariate Gaussian Distribution

» A particularly important example of a probability distribution
over random vectors is the multivariate Gaussian (normal)
distribution.

> |t is a generalization of the univariate Guassian to higher
dimensions.

» A multivariate Gaussian distribution with mean g € R" and

covariance ¥ € R"*" has the following PDF:
1 ENCEM IRl CEm)
px(x) = N(x|p,B) = ———e 2 ;
(27)3 |33

and the following shape? (in 2D):

3Taken from Wikipedia.
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References

» This tutorial is mainly adapted from Stanford's CS229
Probability Theory Review. However, it doesn't give all the
details. For the details please refer to this source.
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