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About this tutorial

I This is not an comprehensive review of Probability Theory.

I The focus is on the subset related to COMP 551.

I More references can be found at the end of the slides.

I Also please shoot me an email if you find any typos or
mistakes!
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Why Probability Theory?

I There are lots of uncertainty in the world.

I Probability theory provides a consistent framework for
quantification and manipulation of uncertainty.
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Sample Space

I Sample space, denoted as Ω, is the set of all possible
outcomes of an experiment.

I Observations, denoted as ω ∈ Ω, are points in the sample
space. They are also called sampled outcomes.

I Events, denoted as A ∈ Ω, are subsets of the sample space.
Note that a set of events is also an event.

I Example: Consider the experiment of flipping a coin twice:
I Ω = {HH,HT ,TH,TT}.
I The sampled outcomes can be ω = HH or ω = HT .
I One possible event is A = {HH,TT}, which corresponds to

the event of both flips being the same.
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Axioms of Probability Theory

I A probability measure is a function that maps events to the
interval [0, 1], i.e. P : A→ [0, 1].

I The probability measure satisfies the following properties:

1. P(A) ≥ 0 for all A.
2. P(Ω) = 1.
3. If A1,A2, . . . are disjoint events (Ai ∩ Aj = ∅), then

P

(⋃
i

Ai

)
=
∑
i

P(Ai ).

These three properties are called the axioms of probability
theory.

7 / 40



Axioms of Probability Theory

I A probability measure is a function that maps events to the
interval [0, 1], i.e. P : A→ [0, 1].

I The probability measure satisfies the following properties:

1. P(A) ≥ 0 for all A.
2. P(Ω) = 1.
3. If A1,A2, . . . are disjoint events (Ai ∩ Aj = ∅), then

P

(⋃
i

Ai

)
=
∑
i

P(Ai ).

These three properties are called the axioms of probability
theory.

7 / 40



Properties of the Probability Measure

I Properties:
I If A ⊆ B, then P(A) ≤ P(B).
I P(A ∩ B) ≤ min(P(A),P(B)).
I Union Bound:

P(A ∪ B) ≤ P(A) + P(B)

.
I Law of Total Probability: If A1, . . . ,Ak are disjoint events

such that
⋃k

i=1 Ai = Ω, then

k∑
i=1

P(Ai ) = 1.

I For more see page 1 of CS229’s Probability Theory Review.
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Joint and Conditional Probabilities

I Joint probability of events A and B, denoted as P(A,B), is
the probability that both events will occur

P(A,B) = P(A ∩ B).

I Conditional probability of A given B, denoted as P(A|B), is
the probability that A will occur given B has already occurred.

I Assuming P(B) > 0, it is defined as

P(A|B) =
P(A,B)

P(B)
.

I This leads to the product rule in probability theory:

P(A,B) = P(A|B)P(B) = P(B|A)P(A).

9 / 40



Joint and Conditional Probabilities

I Joint probability of events A and B, denoted as P(A,B), is
the probability that both events will occur

P(A,B) = P(A ∩ B).

I Conditional probability of A given B, denoted as P(A|B), is
the probability that A will occur given B has already occurred.

I Assuming P(B) > 0, it is defined as

P(A|B) =
P(A,B)

P(B)
.

I This leads to the product rule in probability theory:

P(A,B) = P(A|B)P(B) = P(B|A)P(A).

9 / 40



Joint and Conditional Probabilities

I Joint probability of events A and B, denoted as P(A,B), is
the probability that both events will occur

P(A,B) = P(A ∩ B).

I Conditional probability of A given B, denoted as P(A|B), is
the probability that A will occur given B has already occurred.

I Assuming P(B) > 0, it is defined as

P(A|B) =
P(A,B)

P(B)
.

I This leads to the product rule in probability theory:

P(A,B) = P(A|B)P(B) = P(B|A)P(A).

9 / 40



Independence

I Events A and B are independent if and only if

P(A,B) = P(A)P(B),

or equivalently (using the product rule),

P(A|B) = P(A).

Intuitively, this says that observing B does not have any effect
on the probability of A.

I Also events A and B are conditionally independent given
event C if and only if

P(A,B|C ) = P(A|C )P(B|C ).

10 / 40



Independence

I Events A and B are independent if and only if

P(A,B) = P(A)P(B),

or equivalently (using the product rule),

P(A|B) = P(A).

Intuitively, this says that observing B does not have any effect
on the probability of A.

I Also events A and B are conditionally independent given
event C if and only if

P(A,B|C ) = P(A|C )P(B|C ).

10 / 40



Outline

Probability Theory
Elements of Probability Theory
Random Variables
Two Random Variables
Multiple Random Variables

11 / 40



Random Variables

I Sample space is composed of events as five consequent coin
tosses.

I But how do we go from these events to numerical outcomes
that we actually care about? For example the number of
heads?

I A random variable is a mapping X : Ω→ R which assigns a
real number X (ω) to each observed outcome ω ∈ Ω in the
sample space.

I While the random variable is denoted with upper case letters
X (ω) (or simply X ), the values it can take are denoted with
lower case ones x .

I Example: Consider the experiment of flipping a coin 5 times.
X (ω) can be a counter that counts the number of heads. In
this case if the outcome is ω0 = HTTTH, then X (ω0) = 2.
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Discrete and Continuous Random Variables

I Discrete random variables
I Can take only a finite number of values
I Example: Number of heads in the sequence of 5 coin tosses
I Here, the probability of the set associated with a random

variable X taking on some specific value k is:

P(X = k) = P({ω : X (ω) = k}).

I Continuous random variables
I Can take on a infinite number of possible values
I Example: Time of bus arrivals in a bus station
I Here, the probability of the set associated with a random

variable X taking on some specific value between a and b
(a < b) is:

P(a ≤ X ≤ b) = P({ω : a ≤ X (ω) ≤ b}).
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Probability Mass Functions

I When X is discrete random variable, we use probability mass
functions to assign probabilities to random variables taking
certain values.

I The probability mass function (PMF) is a function
pX : R→ [0, 1] such that

pX (x) = P(X = x).

I Intuitively, it is the probability that the random variable X (ω)
will take the value x .
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Probability Mass Functions

I Example: If X (ω) is a random variable indicating the number
of H occurrences in 2 coin tosses, we have

pX (2) = P(X = 2) =
1

4
,

pX (1) = P(X = 1) =
1

2
,

pX (0) = P(X = 0) =
1

4
.

I For the properties PMFs see page 3 of CS229’s Probability
Theory Review.

15 / 40
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Probability Density Functions
I When X is continuous random variable, we use probability

density functions to assign probabilities to random variables
taking certain values in a specific interval.

I The probability density function (PDF) is a function
fX : R→ R such that∫ x+∆x

x
fX (x)dx = P(x ≤ X ≤ x + ∆x).

I It is important to note that fX (x) is not equal to P(X = x),
i.e.

fX (x) 6= P(X = x).

It is its integral over an interval that gives the probability.
I In fact, fX (x) can even be greater than 1 for certain x values.

However, it cannot be negative.
I For the properties PDFs see page 4 of CS229’s Probability

Theory Review.

16 / 40
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Expectation

I The expectation (expected value or mean) of a
I discrete random variable X is defined as:

E[X ] =
∑

x∈Val(X )

xpX (x),

I continuous random variable Y defined as:

E[Y ] =

∫ ∞
−∞

yfY (y)dy .

I Intuitively, the expectation of random variable can be thought
of as a “weighted average” of the values it can take, where
the weights are pX (x) or fY (y).

I For the properties expectations see page 4 of CS229’s
Probability Theory Review.
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Variance

I The variance of a (discrete or continuous) random variable is
defined as:

Var[X ] = E[(X − E[X ])2].

I With several steps of derivation, it can also be written as

Var[X ] = E[X 2]− E[X ]2.

I Intuitively, it is a measure of how concentrated the
distribution of a random variables is around its mean.

I For the properties variance see page 4 of CS229’s Probability
Theory Review.

18 / 40
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Common Random Variables

I Below are the distributions, means and variances of some
common random variables1:

I Do not try to memorize them, they are put here for reference.

1Taken from CS229’s Probability Theory Review.
19 / 40
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Gaussian Distribution
I Among these distributions the Gaussian distribution (also

known as the Normal distribution) is particularly important as
it shows up everywhere.

I It has the following PDF:

pX (x) = N (x |µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

and the following shape2:

2Taken from Wikipedia.
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Two Random Variables

I Thus far, we have considered single random variables. In many
situations, however, there may be more than one quantity that
we are interested in knowing during a random experiment.

I For instance, in an experiment where we flip a coin ten times,
we may care about both X (ω) = “the number of heads that
come up” as well as Y (ω) = “the length of the longest run of
consecutive heads”.

I In this part, we consider the setting of two random variables.
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Joint and Marginal Probability Mass Functions

I When X and Y are discrete random variables, we use joint
PMFs to assign probabilities to random variables taking
certain values.

I The joint PMF is a function pXY : R× R→ [0, 1] such that

pXY (x , y) = P(X = x ,Y = y).

I Intuitively, it is the probability that the random variables X (ω)
and Y (ω) will take the values x and y .
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Joint and Marginal Probability Mass Functions...

I How does the joint PMF relate to PMFs for each variable
separately? It turns out that

pX (x) =
∑
y

pXY (x , y), pY (y) =
∑
x

pXY (x , y).

I pX (x) and pY (y) are referred to marginal PMFs of X and
Y , respectively.

I This summation is referred to as marginalization.
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Joint and Marginal Probability Density Functions
I When X and Y are continuous random variables, we use

probability density functions to assign probabilities to random
variables taking certain values in specific intervals.

I The joint PDF is a function fXY : R× R→ R such that∫ x+∆x

x

∫ y+∆y

y
fXY (x , y)dxdy

= P(x ≤ X ≤ x + ∆x , y ≤ Y ≤ y + ∆y).

I It is important to note again that

fXY (x , y) 6= P(X = x ,Y = y).

It is its integral over the intervals that gives the probability.

I In fact, fXY (x , y) can even be greater than 1 for certain x and
y values. However, it cannot be negative.
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Joint and Marginal Probability Density Functions...

I Analogous to the discrete case we have:

fX (x) =

∫ ∞
−∞

fXY (x , y)dy , fY (y) =

∫ ∞
−∞

fXY (x , y)dx .

I fX (x) and fY (y) are referred to marginal PDFs of X and Y ,
respectively.
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Conditional Distributions

I In the discrete case, the conditional PMF of Y given X is
defined as:

pY |X (y |x) =
pXY (x , y)

pX (x)
,

assuming that pX (x) > 0.

I For the continuous case see page 8 of CS229’s Probability
Theory Review, but it has the same form.
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Bayes’ Rule

I A useful formula that often arises when trying to derive an
expression for the conditional probability of one event given
the other is Bayes’ Rule.

I In the case of discrete random variables X and Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)

pX (x)

Posterior =
Likelihood× Prior

Evidence

(Posterior ∝ Likelihood× Prior).

I The same thing can be done with PDFs in the case of
continuous random variables.

28 / 40



Bayes’ Rule

I A useful formula that often arises when trying to derive an
expression for the conditional probability of one event given
the other is Bayes’ Rule.

I In the case of discrete random variables X and Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)

pX (x)

Posterior =
Likelihood× Prior

Evidence

(Posterior ∝ Likelihood× Prior).

I The same thing can be done with PDFs in the case of
continuous random variables.

28 / 40



Bayes’ Rule

I A useful formula that often arises when trying to derive an
expression for the conditional probability of one event given
the other is Bayes’ Rule.

I In the case of discrete random variables X and Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)

pX (x)

Posterior =
Likelihood× Prior

Evidence

(Posterior ∝ Likelihood× Prior).

I The same thing can be done with PDFs in the case of
continuous random variables.

28 / 40



Independence

I Two discrete random variables X and Y are independent if

pXY (x , y) = pX (x)pY (y),

for all x ∈ Val(X ) and y ∈ Val(Y ).

I For the continuous case see page 8 of CS229’s Probability
Theory Review, but it has the same form.

I Intuitively, two random variables are independent if knowing
the value of one variable will never affect the probability of
knowing the other.
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Expectation and Covariance

I Suppose that we have two discrete random variables X and
Y , and g(., .) is a function of these two random variables.

I Then the expected value of g is defined in the following way:

E[g(X ,Y )] =
∑

x∈Val(X )

∑
y∈Val(Y )

g(x , y)pXY (x , y).

I For continuous random variables X and Y the analogous
expression is:

E[g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fXY (x , y)dxdy .
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Expectation and Covariance...

I Using the expectation definition in the previous slide, the
covariance of two random variables X and Y is defined as:

Cov [X ,Y ] = E[(X − E[X ])(Y − E[Y ])].

I With a few steps of derivation it can also be written as:

Cov [X ,Y ] = E[XY ]− E[X ]E[Y ].

I When Cov [X ,Y ] = 0, we say that X and Y are uncorrelated.

I When X and Y are independent, then Cov [X ,Y ] = 0.
However, the opposite is not always true.

I For the properties covariance see page 9 of CS229’s
Probability Theory Review.
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Multiple Random Variables

I The notions and ideas introduced in the previous section can
be generalized to more than two random variables.

I In particular, suppose that we have n random variables

X1(ω),X2(ω), . . . ,Xn(ω).
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Example of Generalization
I In the case of having two discrete random variables X and Y ,

the joint PMF was defined as:

pXY (x , y) = P(X = x ,Y = y),

and marginalization was done as follows:

pX (x) =
∑
y

pXY (x , y), pY (y) =
∑
x

pXY (x , y).

I In the case of having n discrete random variables
X1,X2, . . . ,Xn, the joint PMF becomes:

pX1X2...Xn(x1, x2, . . . , xn) = P(X1 = x1,X2 = x2, . . . ,Xn = xn),

and marginalization becomes:

pX1(x1) =
∑

x2,x3,...,xn

pX2...Xn(x2, . . . , xn).

Note that the same can be done for x2, . . . , xn.
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Chain Rule and Mutual Independence

I From the definition of conditional probabilities, one can show
that:

pX1X2...Xn(x1, x2, . . . , xn) = pX1(x1)
n∏

i=2

pXi
(xi |x1, . . . , xi−1).

This is called the chain rule in probability theory.

I In this way, a joint probability is written in terms of
conditional probabilities.

I We say that X1,X2, . . . ,Xn are mutually independent if:

pX1X2...Xn(x1, x2, . . . , xn) =
n∏

i=1

pXi
(xi ).
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Independent and Identically Distributed (IID)

I A set of random variables are independent and identically
distributed (i.i.d.) if
I they are sampled from the same distribution
I and are mutually independent.

I Example: Consecutive coin flips are assumed to be i.i.d.:
I The probability of H is the same for each flip.
I One flip’s outcome doesn’t affect the others.
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Random Vectors

I When working with multiple random variables X1,X2, . . . ,Xn,
it is often convenient to put them in a vector:

X =


X1

X2
...
Xn

 .
This resulting vector is called a random vector (a mapping
X : Ω→ Rn).

I It should be noted that this is just another notation, and
nothing more.
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Covariance Matrix

I For a given random vector X , its covariance matrix Σ is an
n × n square matrix and is defined as:

Σ = E[(X − E[X ])(X − E[X ])>].

And its (i , j)th entry is

Σij = Cov [Xi ,Xj ].

I With a few steps of derivation it can also be written as:

Σ = E[XX>]− E[X ]E[X ]>.

I It should be noted that Σ is positive semidefinite and
symmetric.
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Multivariate Gaussian Distribution
I A particularly important example of a probability distribution

over random vectors is the multivariate Gaussian (normal)
distribution.

I It is a generalization of the univariate Guassian to higher
dimensions.

I A multivariate Gaussian distribution with mean µ ∈ Rn and
covariance Σ ∈ Rn×n has the following PDF:

pX (x) = N (x |µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
(x−µ)>Σ−1(x−µ)

2 ,

and the following shape3 (in 2D):

3Taken from Wikipedia.
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References

I This tutorial is mainly adapted from Stanford’s CS229
Probability Theory Review. However, it doesn’t give all the
details. For the details please refer to this source.
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