COMP 551 - Applied Machine Learning A Brief Tutorial on Linear Algebra

Safa Alver (slides adapted from Stanford's CS229 Linear Algebra Review)

McGill University

January 16, 2021

▶ This is not an comprehensive review of Linear Algebra.

- ▶ This is not an comprehensive review of Linear Algebra.
- ▶ The focus is on the subset related to COMP 551.

- ▶ This is not an comprehensive review of Linear Algebra.
- ▶ The focus is on the subset related to COMP 551.
- More references can be found at the end of the slides.

- This is not an comprehensive review of Linear Algebra.
- ▶ The focus is on the subset related to COMP 551.
- More references can be found at the end of the slides.
- Also please shoot me an email if you find any typos or mistakes!

Outline

Linear Algebra Basics of Linear Algebra Matrix Algebra Matrix Operations Matrix Calculus

Outline

Linear Algebra Basics of Linear Algebra

Matrix Algebra Matrix Operations Matrix Calculus A scalar is just a single number (integers, rational numbers, ...).

- A scalar is just a single number (integers, rational numbers, ...).
- Examples: $1, 2, \pi, e, -112, \frac{1}{4}, \ldots$

► A vector is a 1D array of numbers.

► A vector is a 1D array of numbers.

Examples:

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad y = \begin{bmatrix} -1 \\ 2 \\ 5 \\ 6 \end{bmatrix}, \qquad \dots$$

► A vector is a 1D array of numbers.

Examples:

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad y = \begin{bmatrix} -1 \\ 2 \\ 5 \\ 6 \end{bmatrix}, \qquad \dots$$

•

In this course we will mostly use real vectors living in an n dimensional space:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

٠

► A vector is a 1D array of numbers.

Examples:

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad y = \begin{bmatrix} -1 \\ 2 \\ 5 \\ 6 \end{bmatrix}, \qquad \dots$$

•

In this course we will mostly use real vectors living in an n dimensional space:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

٠

• We use $x \in \mathbb{R}^n$ to denote this.

A matrix is a 2D array of numbers.

A matrix is a 2D array of numbers.

Examples:

$$X = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}, \qquad Y = \begin{bmatrix} -1 & 9 \\ 2 & -1 \\ 5 & 5 \end{bmatrix}, \qquad \dots$$

٠

- A matrix is a 2D array of numbers.
- Examples:

$$X = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}, \qquad Y = \begin{bmatrix} -1 & 9 \\ 2 & -1 \\ 5 & 5 \end{bmatrix}, \qquad \dots$$

In this course we will mostly use real matrices living in an m × n dimensional space:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

.

Here, m is the number of rows and n is the number of columns.

- A matrix is a 2D array of numbers.
- Examples:

$$X = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}, \qquad Y = \begin{bmatrix} -1 & 9 \\ 2 & -1 \\ 5 & 5 \end{bmatrix}, \qquad \dots$$

In this course we will mostly use real matrices living in an m × n dimensional space:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Here, m is the number of rows and n is the number of columns.

• We use $A \in \mathbb{R}^{m \times n}$ to denote this.

A tensor is the generalization of the idea of having an array of numbers.

- A tensor is the generalization of the idea of having an array of numbers.
- It may be:
 - OD and be a scalar,

- A tensor is the generalization of the idea of having an array of numbers.
- It may be:
 - OD and be a scalar,
 - 1D and be a vector,

- A tensor is the generalization of the idea of having an array of numbers.
- It may be:
 - OD and be a scalar,
 - 1D and be a vector,
 - 2D and be a matrix,

Tensors

- A tensor is the generalization of the idea of having an array of numbers.
- It may be:
 - OD and be a scalar,
 - 1D and be a vector,
 - 2D and be a matrix,
 - nD and just be an nD tensor.

A square matrix is a matrix with the same number of rows and columns, i.e. m = n.

- A square matrix is a matrix with the same number of rows and columns, i.e. m = n.
- ► The identity matrix, denoted I ∈ R^{n×n}, is a special square matrix with ones on the diagonal and zeros elsewhere:

$$\mathcal{I}_{ij} = egin{cases} 1, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

.

- A square matrix is a matrix with the same number of rows and columns, i.e. m = n.
- ► The identity matrix, denoted I ∈ R^{n×n}, is a special square matrix with ones on the diagonal and zeros elsewhere:

$$\mathcal{I}_{ij} = egin{cases} 1, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \dots$$

- A square matrix is a matrix with the same number of rows and columns, i.e. m = n.
- ► The identity matrix, denoted I ∈ R^{n×n}, is a special square matrix with ones on the diagonal and zeros elsewhere:

$$I_{ij} = egin{cases} 1, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \dots$$

• Its most important property is that for any $A \in \mathbb{R}^{n \times n}$:

$$AI = A = IA.$$

A diagonal matrix, denoted D ∈ ℝ^{n×n} is a special square matrix where all non-diagonal elements are zero:

$$D_{ij} = egin{cases} d_i, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

A diagonal matrix, denoted D ∈ ℝ^{n×n} is a special square matrix where all non-diagonal elements are zero:

$$D_{ij} = egin{cases} d_i, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

$$I = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}, \qquad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 9 \end{bmatrix}, \qquad \dots$$

A diagonal matrix, denoted D ∈ ℝ^{n×n} is a special square matrix where all non-diagonal elements are zero:

$$D_{ij} = egin{cases} d_i, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

$$I = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}, \qquad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 9 \end{bmatrix}, \qquad \dots$$

These matrices can also be denoted as

$$D = \operatorname{diag}(d_1, d_2, \ldots, d_n).$$

A diagonal matrix, denoted D ∈ ℝ^{n×n} is a special square matrix where all non-diagonal elements are zero:

$$D_{ij} = egin{cases} d_i, & ext{if } i=j \ 0, & ext{otherwise} \end{cases}$$

٠

$$I = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}, \qquad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 9 \end{bmatrix}, \qquad \dots$$

These matrices can also be denoted as

$$D = \operatorname{diag}(d_1, d_2, \ldots, d_n).$$

lt should also be noted that I = diag(1, 1, ..., 1).

Outline

Linear Algebra

Basics of Linear Algebra

Matrix Algebra

Matrix Operations Matrix Calculus

Vector-Vector Products

The inner product (or dot product) between two vectors:

$$x^{\top}z = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} = \sum_{i=1}^n x_i z_i.$$

Vector-Vector Products

The inner product (or dot product) between two vectors:

$$x^{\top}z = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} = \sum_{i=1}^n x_i z_i.$$

$$\begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 1 \times 2 + 3 \times 6 = 20.$$

Vector-Vector Products...

The outer product between two vectors:

$$xz^{\top} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} = \begin{bmatrix} x_1z_1 & x_1z_2 & \cdots & x_1z_n \\ x_2z_1 & x_2z_2 & \cdots & x_2z_n \\ \vdots & \vdots & \vdots & \vdots \\ x_nz_1 & x_nz_2 & \cdots & x_nz_n \end{bmatrix}.$$

Vector-Vector Products...

The outer product between two vectors:

$$xz^{\top} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} = \begin{bmatrix} x_1z_1 & x_1z_2 & \cdots & x_1z_n \\ x_2z_1 & x_2z_2 & \cdots & x_2z_n \\ \vdots & \vdots & \vdots & \vdots \\ x_nz_1 & x_nz_2 & \cdots & x_nz_n \end{bmatrix}.$$

Example:

$$\begin{bmatrix} 1\\ 3 \end{bmatrix} \begin{bmatrix} 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 \times 2 & 1 \times 6\\ 3 \times 2 & 3 \times 6 \end{bmatrix} = \begin{bmatrix} 2 & 6\\ 6 & 18 \end{bmatrix}.$$

Matrix-Vector Products

If we write A in terms of its row vectors, the product Ax can be expressed as:

Matrix-Vector Products

If we write A in terms of its row vectors, the product Ax can be expressed as:

$$Ax = \begin{bmatrix} --a_1^\top \\ --a_2^\top \\ \vdots \\ --a_m^\top \\ \end{bmatrix} x = \begin{bmatrix} a_1^\top x \\ a_2^\top x \\ \vdots \\ a_m^\top x \end{bmatrix}$$

It should be noted that Ax is just a vector whose elements are the dot products between A's row vectors and the vector x.

Matrix-Vector Products

If we write A in terms of its row vectors, the product Ax can be expressed as:

$$Ax = \begin{bmatrix} --a_1^\top \\ --a_2^\top \\ \vdots \\ --a_m^\top \\ \end{bmatrix} x = \begin{bmatrix} a_1^\top x \\ a_2^\top x \\ \vdots \\ a_m^\top x \end{bmatrix}$$

٠

- It should be noted that Ax is just a vector whose elements are the dot products between A's row vectors and the vector x.
- Example:

$$\begin{bmatrix} 1 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 4 \times 6 \\ 4 \times 2 + 3 \times 6 \end{bmatrix} = \begin{bmatrix} 26 \\ 16 \end{bmatrix}$$

Matrix-Vector Products (Another view)

We can also write A in terms of its columns, then we would have:

$$Ax = \begin{bmatrix} \begin{vmatrix} & | & & | \\ a^1 & a^2 & \cdots & a^n \\ | & | & & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} | \\ a^1 \\ | \end{bmatrix} x_1 + \cdots + \begin{bmatrix} | \\ a^n \\ | \end{bmatrix} x_n.$$

Matrix-Vector Products (Another view)

We can also write A in terms of its columns, then we would have:

$$Ax = \begin{bmatrix} \begin{vmatrix} & & & & \\ a^1 & a^2 & \cdots & a^n \\ \mid & \mid & & \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} \\ a^1 \\ \end{vmatrix} x_1 + \cdots + \begin{bmatrix} \begin{vmatrix} \\ a^n \\ \end{vmatrix} x_n.$$

In this view, the product is a linear combination of the columns of A.

Matrix-Matrix Multiplication

- Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- If we write A in terms of its row vectors and B in terms of it column vectors, their multiplication AB can be expressed as:

Matrix-Matrix Multiplication

- Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$.
- If we write A in terms of its row vectors and B in terms of it column vectors, their multiplication AB can be expressed as:

Here, AB is just a matrix whose entries are the dots products between A's row vectors and B's column vectors.

Properties of Matrix-Matrix Multiplication

Properties of Matrix-Matrix Multiplication

- Associative: A(BC) = (AB)C.
- Distributive: A(B + C) = AB + AC.

Properties of Matrix-Matrix Multiplication

- Associative: A(BC) = (AB)C.
- Distributive: A(B + C) = AB + AC.
- ▶ Not Commutative (in general): $AB \neq BA$.

Outline

Linear Algebra

Basics of Linear Algebra Matrix Algebra Matrix Operations Matrix Calculus

Taking the transpose of a matrix corresponds to "flipping" its rows and columns.

- Taking the transpose of a matrix corresponds to "flipping" its rows and columns.
- Given an m × n matrix A, its transpose, denoted as A^T, is an n × m matrix whose entries are given by:

$$(A^{\top})_{ij} = A_{ji}.$$

- Taking the transpose of a matrix corresponds to "flipping" its rows and columns.
- Given an m × n matrix A, its transpose, denoted as A^T, is an n × m matrix whose entries are given by:

$$(A^{\top})_{ij} = A_{ji}.$$

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}, \qquad A^{\top} = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}.$$

- Taking the transpose of a matrix corresponds to "flipping" its rows and columns.
- Given an m × n matrix A, its transpose, denoted as A^T, is an n × m matrix whose entries are given by:

$$(A^{\top})_{ij} = A_{ji}.$$

Example:

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}, \qquad A^{\top} = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}.$$

It has the following properties:

$$(A^{\top})^{\top} = A$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

$$(A+B)^{\top} = A^{\top} + B^{\top}$$

Matrix Trace

► The trace of a square matrix A ∈ ℝ^{n×n} is the sum of its diagonal elements:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Matrix Trace

► The trace of a square matrix A ∈ ℝ^{n×n} is the sum of its diagonal elements:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Example:

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$$
, $Tr(A) = 1 + 5 = 6$.

Matrix Trace

► The trace of a square matrix A ∈ ℝ^{n×n} is the sum of its diagonal elements:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Example:

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$$
, $Tr(A) = 1 + 5 = 6$.

▶ It has the following properties (assuming $B \in \mathbb{R}^{n \times n}$):

► Informally, the norm of a vector x ∈ ℝⁿ, denoted ||x||, is a measure of how "large" it is.

- Informally, the norm of a vector x ∈ ℝⁿ, denoted ||x||, is a measure of how "large" it is.
- Formally, it is any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies certain properties¹.

¹See page 10 of CS229's Linear Algebra Review for these properties.

- ► Informally, the norm of a vector x ∈ ℝⁿ, denoted ||x||, is a measure of how "large" it is.
- Formally, it is any function f : ℝⁿ → ℝ that satisfies certain properties¹.
- Commonly used norms are as follows:
 - Eucledean or ℓ_2 norm (most popular):

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

¹See page 10 of CS229's Linear Algebra Review for these properties.

- Informally, the norm of a vector x ∈ ℝⁿ, denoted ||x||, is a measure of how "large" it is.
- Formally, it is any function f : ℝⁿ → ℝ that satisfies certain properties¹.
- Commonly used norms are as follows:
 - Eucledean or ℓ_2 norm (most popular):

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

 \triangleright ℓ_1 norm:

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

¹See page 10 of CS229's Linear Algebra Review for these properties.

- Informally, the norm of a vector x ∈ ℝⁿ, denoted ||x||, is a measure of how "large" it is.
- Formally, it is any function f : ℝⁿ → ℝ that satisfies certain properties¹.
- Commonly used norms are as follows:
 - Eucledean or ℓ_2 norm (most popular):

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

• ℓ_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|.$

 ℓ_{∞} norm:

$$||x||_{\infty} = \max_{i} |x_i|.$$

¹See page 10 of CS229's Linear Algebra Review for these properties.

▶ All of these norms belong to the family of ℓ_p norms, parameterized by a real number $p \ge 1$, which is defined as:

$$||\mathbf{x}||_{p} = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}\right)^{\frac{1}{p}}$$

٠

All of these norms belong to the family of ℓ_p norms, parameterized by a real number p ≥ 1, which is defined as:

$$||\mathbf{x}||_{p} = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}\right)^{\frac{1}{p}}$$

It should be noted that norms can also be defined for matrices (Frobenius norm), but they are out of the scope of this tutorial.

Linear Independence

A set of vectors X = {x₁, x₂, ..., x_m} ⊂ ℝⁿ are called **linearly dependent** if any one of them can be represented as a linear combination of the others:

$$x_k = \sum_{x_i \in \mathcal{X} - \{x_k\}} c_i x_i,$$

where $1 \leq k \leq m$ and $c_i \in \mathbb{R}$.

Linear Independence

A set of vectors X = {x₁, x₂, ..., x_m} ⊂ ℝⁿ are called **linearly dependent** if any one of them can be represented as a linear combination of the others:

$$x_k = \sum_{x_i \in \mathcal{X} - \{x_k\}} c_i x_i,$$

where $1 \leq k \leq m$ and $c_i \in \mathbb{R}$.

> Otherwise, they are called **linearly independent**.

Linear Independence

A set of vectors X = {x₁, x₂, ..., x_m} ⊂ ℝⁿ are called **linearly dependent** if any one of them can be represented as a linear combination of the others:

$$x_k = \sum_{x_i \in \mathcal{X} - \{x_k\}} c_i x_i,$$

where $1 \leq k \leq m$ and $c_i \in \mathbb{R}$.

Otherwise, they are called linearly independent.

Example:

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

are linearly independent vectors as any linear combination of the two of them can't give the other.

► The column rank of a matrix A ∈ ℝ^{m×n} is the size of the largest subset of column vectors of A that constitute a linearly independent set.

- ► The column rank of a matrix A ∈ ℝ^{m×n} is the size of the largest subset of column vectors of A that constitute a linearly independent set.
- The row rank is the same thing, except for the row vectors of A.

- ► The column rank of a matrix A ∈ ℝ^{m×n} is the size of the largest subset of column vectors of A that constitute a linearly independent set.
- The row rank is the same thing, except for the row vectors of A.
- For any matrix A ∈ ℝ^{m×n}, these two are equal. So, both of them are collectively referred to as the rank of a A, and are denoted as rank(A).

- ► The column rank of a matrix A ∈ ℝ^{m×n} is the size of the largest subset of column vectors of A that constitute a linearly independent set.
- The row rank is the same thing, except for the row vectors of A.
- For any matrix A ∈ ℝ^{m×n}, these two are equal. So, both of them are collectively referred to as the rank of a A, and are denoted as rank(A).
- Properties:
 - ▶ rank(A) ≤ min(m, n).
 - If rank(A) = min(m, n), A is called **full rank**.
 - rank(A) = rank(A^{\top}).
 - ► For more see page 11 of CS229's Linear Algebra Review.

► The inverse of a square matrix A ∈ ℝ^{n×n} is denoted as A⁻¹ and is unique such that:

$$A^{-1}A = I = AA^{-1}.$$

► The inverse of a square matrix A ∈ ℝ^{n×n} is denoted as A⁻¹ and is unique such that:

$$A^{-1}A = I = AA^{-1}.$$

► A is called invertible (or non-singular) if A⁻¹ exists, and non-invertible (or singular) otherwise.

► The inverse of a square matrix A ∈ ℝ^{n×n} is denoted as A⁻¹ and is unique such that:

$$A^{-1}A = I = AA^{-1}.$$

- ► A is called invertible (or non-singular) if A⁻¹ exists, and non-invertible (or singular) otherwise.
- ln order for A^{-1} to exist, A must be full rank.

► The inverse of a square matrix A ∈ ℝ^{n×n} is denoted as A⁻¹ and is unique such that:

$$A^{-1}A = I = AA^{-1}.$$

- A is called invertible (or non-singular) if A⁻¹ exists, and non-invertible (or singular) otherwise.
- ln order for A^{-1} to exist, A must be full rank.
- Properties:

•
$$(A^{-1})^{-1} = A.$$

• $(AB)^{-1} = B^{-1}A^{-1}$
• $(A^{-1})^{\top} = (A^{\top})^{-1}.$

Orthogonal Matrices

• Two vectors $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ are **orthogonal** if $x^\top z = 0$.
Orthogonal Matrices

- Two vectors $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ are **orthogonal** if $x^\top z = 0$.
- A vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$.

Orthogonal Matrices

- Two vectors $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ are **orthogonal** if $x^\top z = 0$.
- A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$.
- A square matrix U ∈ ℝ^{n×n} is orthogonal if all of its columns are orthogonal to each other and are normalized. Its columns are then referred to as being orthonormal.

Orthogonal Matrices

- Two vectors $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ are **orthogonal** if $x^\top z = 0$.
- A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$.
- A square matrix U ∈ ℝ^{n×n} is orthogonal if all of its columns are orthogonal to each other and are normalized. Its columns are then referred to as being orthonormal.
- Properties:

The inverse of an orthogonal matrix is its transpose:

$$U^{\top}U=I=UU^{\top}.$$

Multiplying an n dimensional vector with an n × n orthogonal matrix will not change its Euclidean norm:

$$||Ux||_2 = ||x||_2.$$

Span and Projection

The span of a set of vectors {x₁, x₂,..., x_m} is the set of all vectors that can be expressed as a linear combination of all of them:

$$\operatorname{span}(\{x_1, x_2, \ldots, x_m\}) = \left\{ v : v = \sum_{i=1}^m c_i x_i, \quad c_i \in \mathbb{R} \right\}.$$

Span and Projection

The span of a set of vectors {x₁, x₂,..., x_m} is the set of all vectors that can be expressed as a linear combination of all of them:

$$\operatorname{span}(\{x_1, x_2, \ldots, x_m\}) = \left\{ v : v = \sum_{i=1}^m c_i x_i, \quad c_i \in \mathbb{R} \right\}.$$

The projection of a vector z ∈ ℝ^p onto the span of {x₁, x₂,..., x_m} is the vector v ∈ span({x₁, x₂,..., x_m}), such that v is as close as possible to z, as measure by the Euclidean norm ||v − z||₂:

$$Proj(z; \{x_1, x_2, \dots, x_m\}) = \arg\min_{v \in span(\{x_1, x_2, \dots, x_m\})} ||v - z||_2.$$

Range and Nullspace of a Matrix

► The range of the columnspace of the matrix A ∈ ℝ^{m×n}, denoted as R(A), is the span of the columns of A.

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

Range and Nullspace of a Matrix

The range of the columnspace of the matrix A ∈ ℝ^{m×n}, denoted as R(A), is the span of the columns of A.

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

The nullspace of a matrix A ∈ ℝ^{m×n}, denoted as N(A), is the set of all vectors that equal to 0 when multiplied by A:

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}.$$

The determinant of a square matrix A ∈ ℝ^{n×n} is a function det : ℝ^{n×n} → ℝ, and it is denoted as:

|A| or det(A).

The determinant of a square matrix A ∈ ℝ^{n×n} is a function det : ℝ^{n×n} → ℝ, and it is denoted as:

|A| or det(A).

Let A_{-i-j} ∈ ℝ^{(n-1)×(n-1)} be the matrix that results from deleting the *i*th row and *j*th column of matrix A.

The determinant of a square matrix A ∈ ℝ^{n×n} is a function det : ℝ^{n×n} → ℝ, and it is denoted as:

|A| or det(A).

- Let A_{-i-j} ∈ ℝ^{(n-1)×(n-1)} be the matrix that results from deleting the *i*th row and *j*th column of matrix A.
- Then the determinant can algebraically be computed with the following recursive formula:

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{-i-j}|$$
 (for any $j \in 1, ..., n$)

The determinant of a square matrix A ∈ ℝ^{n×n} is a function det : ℝ^{n×n} → ℝ, and it is denoted as:

|A| or det(A).

- Let A_{-i-j} ∈ ℝ^{(n-1)×(n-1)} be the matrix that results from deleting the *i*th row and *j*th column of matrix A.
- Then the determinant can algebraically be computed with the following recursive formula:

$$|\mathcal{A}| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |\mathcal{A}_{-i-j}| \quad (ext{for any } j \in 1, \dots, n)$$

However, this formula has too many terms for matrices bigger than 3 × 3. Thus for big matrices people hardly ever use it.

The determinant of a square matrix A ∈ ℝ^{n×n} is a function det : ℝ^{n×n} → ℝ, and it is denoted as:

|A| or det(A).

- Let A_{-i-j} ∈ ℝ^{(n-1)×(n-1)} be the matrix that results from deleting the *i*th row and *j*th column of matrix A.
- Then the determinant can algebraically be computed with the following recursive formula:

$$|\mathcal{A}| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |\mathcal{A}_{-i-j}| \quad (ext{for any } j \in 1, \dots, n)$$

- However, this formula has too many terms for matrices bigger than 3 × 3. Thus for big matrices people hardly ever use it.
- The determinant has a much more intuitive geometric interpretation however. See the the video on determinants in 3Blue1Brown's "Essence of LA".

► Example:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \qquad |A| = 2 \times 5 - 1 \times 3 = 7$$

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \qquad |A| = 2 \times 5 - 1 \times 3 = 7$$

▶ Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$.

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \qquad |A| = 2 \times 5 - 1 \times 3 = 7$$

• Let
$$A \in \mathbb{R}^{n \times n}$$
 and $B \in \mathbb{R}^{n \times n}$.

Properties:

$$\blacktriangleright A = |A^\top|$$

$$|AB| = |A||B|.$$

► |A| if and only if A is non-invertable.

► For more see page 14 of CS229's Linear Algebra Review.

Quadratic Forms

Given a square matrix A ∈ ℝ^{n×n} and a vector x ∈ ℝⁿ, the scalar x^TAx is called a quadratic form, and can explicitly be written as:

$$x^{\top}Ax = \sum_{i=1}^{n} x_i(Ax)_i = \sum_{i=1}^{n} x_i\left(\sum_{j=1}^{n} A_{ij}x_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_ix_j.$$

- A symmetric matrix $A \in \mathbb{S}^n$ is:
 - ▶ **Positive Definite (PD)** if for all *nonzero* vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax > 0.$

- A symmetric matrix $A \in \mathbb{S}^n$ is:
 - ▶ Positive Definite (PD) if for all nonzero vectors x ∈ ℝⁿ, we have:

 $x^{\top}Ax > 0.$

▶ Positive Semidefinite (PSD) if for all vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax \ge 0.$

- A symmetric matrix $A \in \mathbb{S}^n$ is:
 - ▶ Positive Definite (PD) if for all *nonzero* vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax > 0.$

▶ Positive Semidefinite (PSD) if for all vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax \ge 0.$

► Negative Definite (ND) if for all nonzero vectors x ∈ ℝⁿ, we have:

 $x^{\top}Ax < 0.$

- A symmetric matrix $A \in \mathbb{S}^n$ is:
 - ▶ Positive Definite (PD) if for all *nonzero* vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax > 0.$

▶ Positive Semidefinite (PSD) if for all vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax \ge 0.$

► Negative Definite (ND) if for all *nonzero* vectors x ∈ ℝⁿ, we have:

 $x^{\top}Ax < 0.$

Negative Semidefinite (NSD) if for all vectors $x \in \mathbb{R}^n$, we have:

$$x^{\top}Ax \leq 0.$$

- A symmetric matrix $A \in \mathbb{S}^n$ is:
 - ▶ Positive Definite (PD) if for all *nonzero* vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax > 0.$

▶ Positive Semidefinite (PSD) if for all vectors $x \in \mathbb{R}^n$, we have:

 $x^{\top}Ax \ge 0.$

► Negative Definite (ND) if for all *nonzero* vectors x ∈ ℝⁿ, we have:

 $x^{\top}Ax < 0.$

► Negative Semidefinite (NSD) if for all vectors x ∈ ℝⁿ, we have:

$$x^{\top}Ax \leq 0.$$

An important property of PD and ND matrices is that they are always full rank, and hence, invertible.

Eigenvalues and Eigenvectors

Given a square matrix A ∈ ℝ^{n×n}, we say that λ ∈ C is an eigenvalue of A and x ∈ ℝⁿ is the corresponding eigenvector if:

$$Ax = \lambda x, \quad x \neq 0.$$

Eigenvalues and Eigenvectors

Given a square matrix A ∈ ℝ^{n×n}, we say that λ ∈ C is an eigenvalue of A and x ∈ ℝⁿ is the corresponding eigenvector if:

$$Ax = \lambda x, \quad x \neq 0.$$

Intuitively, this definition means that eigenvectors are special vectors that when multiplied by A, they just get scaled by a factor of λ (without its direction getting changed).

▶ The equation in the previous slide can be written as:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

The equation in the previous slide can be written as:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

► For this equation to have a solution, (λI – A) should have a nonempty nullspace, which is only the case if (λI – A) is not invertible. That is it should have determinant of zero:

$$|(\lambda I - A)| = 0.$$

▶ The equation in the previous slide can be written as:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

► For this equation to have a solution, (λI – A) should have a nonempty nullspace, which is only the case if (λI – A) is not invertible. That is it should have determinant of zero:

$$|(\lambda I - A)| = 0.$$

This equation can be expanded into a polynomial in \(\lambda\) with a degree of n. This polynomial is called the characteristic equation of A and its solution gives the eigenvalues.

▶ The equation in the previous slide can be written as:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

► For this equation to have a solution, (λI – A) should have a nonempty nullspace, which is only the case if (λI – A) is not invertible. That is it should have determinant of zero:

$$|(\lambda I - A)| = 0.$$

- This equation can be expanded into a polynomial in \(\lambda\) with a degree of n. This polynomial is called the characteristic equation of A and its solution gives the eigenvalues.
- After obtaining the eigenvalues, the eigenvectors can easily be obtained by plugging the λ values to the equation at the top of this slide.

▶ The trace of *A* is equal to the sum of its eigenvalues:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

▶ The trace of A is equal to the sum of its eigenvalues:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

The determinant of A is equal to the product of its eigenvalues:

$$|A| = \prod_{i=1}^n \lambda_i.$$

▶ The trace of *A* is equal to the sum of its eigenvalues:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

The determinant of A is equal to the product of its eigenvalues:

$$|A| = \prod_{i=1}^n \lambda_i.$$

The rank of A is equal to the number of nonzero eigenvalues of A.

▶ The trace of *A* is equal to the sum of its eigenvalues:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

The determinant of A is equal to the product of its eigenvalues:

$$|A| = \prod_{i=1}^n \lambda_i$$

- The rank of A is equal to the number of nonzero eigenvalues of A.
- The eigenvalues of a diagonal matrix D = diag(d₁, d₂,..., d_n) are just its diagonal entries.

▶ The trace of *A* is equal to the sum of its eigenvalues:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \lambda_i.$$

The determinant of A is equal to the product of its eigenvalues:

$$|A| = \prod_{i=1}^n \lambda_i$$

- The rank of A is equal to the number of nonzero eigenvalues of A.
- The eigenvalues of a diagonal matrix D = diag(d₁, d₂,..., d_n) are just its diagonal entries.
- ► For more see page 19 of CS229's Linear Algebra Review.

Eigenvalues and Eigenvectors of Symmetric Matrices

In general, the structures of the eigenvalues and eigenvectors of a general square matrix can be subtle to characterize.

Eigenvalues and Eigenvectors of Symmetric Matrices

- In general, the structures of the eigenvalues and eigenvectors of a general square matrix can be subtle to characterize.
- Fortunately, in most of the cases in machine learning, it suffices to deal with symmetric real matrices, whose eigenvalues and eigenvectors have remarkable properties.

Eigenvalues and Eigenvectors of Symmetric Matrices

- In general, the structures of the eigenvalues and eigenvectors of a general square matrix can be subtle to characterize.
- Fortunately, in most of the cases in machine learning, it suffices to deal with symmetric real matrices, whose eigenvalues and eigenvectors have remarkable properties.
- However, for the sake of the brevity of the tutorial we will not go into the details of this special case. For more details on this see pages 19-22 of CS229's Linear Algebra Review.

Outline

Linear Algebra

Basics of Linear Algebra Matrix Algebra Matrix Operations Matrix Calculus
The Gradient

Suppose that f : ℝⁿ → ℝ is a function that takes as input a vector x ∈ ℝⁿ and and returns a scalar value. Then the gradient of f with respect to x is the vector of partial derivatives:

$$\nabla_{x}f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{bmatrix}$$

The Gradient

Suppose that f : ℝⁿ → ℝ is a function that takes as input a vector x ∈ ℝⁿ and and returns a scalar value. Then the gradient of f with respect to x is the vector of partial derivatives:

$$\nabla_{x}f(x) = \begin{bmatrix} \frac{\partial f/\partial x_{1}}{\partial f/\partial x_{2}} \\ \vdots \\ \frac{\partial f/\partial x_{n}}{\partial f/\partial x_{n}} \end{bmatrix}$$

Note that the size of $\nabla_x f(x)$ is always the same size of x.

The Gradient

Suppose that f : ℝⁿ → ℝ is a function that takes as input a vector x ∈ ℝⁿ and and returns a scalar value. Then the gradient of f with respect to x is the vector of partial derivatives:

$$\nabla_{x}f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{bmatrix}$$

- Note that the size of ∇_xf(x) is always the same size of x.
 Properties:
 - $\nabla_x(f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x).$
 - For $c \in \mathbb{R}$, $abla_x(cf(x)) = c
 abla_x f(x)$

The Hessian

Suppose that f : ℝⁿ → ℝ is a function that takes as input a vector x ∈ ℝⁿ and and returns a scalar value. Then the Hessian of f with respect to x is a n × n matrix of partial derivatives:

$$\nabla_x^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

The Hessian

Suppose that f : ℝⁿ → ℝ is a function that takes as input a vector x ∈ ℝⁿ and and returns a scalar value. Then the Hessian of f with respect to x is a n × n matrix of partial derivatives:

$$\nabla_x^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Note that the Hessian is always symmetric as:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

For more on Matrix Calculus

If not familiar with these concepts, try going over the exercises of taking the gradients and Hessians of linear and quadratic functions in pages 26-27 of CS229's Linear Algebra Review.

For more on Matrix Calculus

- If not familiar with these concepts, try going over the exercises of taking the gradients and Hessians of linear and quadratic functions in pages 26-27 of CS229's Linear Algebra Review.
- Also for more details on
 - least squares
 - gradients of the determinant
 - eigenvalues and optimization

see pages 27-29 of CS229's Linear Algebra Review.

References

- This tutorial is mainly adapted from Stanford's CS229 Linear Algebra Review. However, it doesn't give all the details. For the details please refer to this source.
- Here are a couple of good references that you might want to check out:
 - 3Blue1Brown's "Essence of Linear Algebra"
 - The legendary Gilbert Strang's Linear Algebra Course