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About this tutorial

» This is not an comprehensive review of Linear Algebra.
» The focus is on the subset related to COMP 551.
» More references can be found at the end of the slides.

» Also please shoot me an email if you find any typos or
mistakes!
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Scalars

» A scalar is just a single number (integers, rational numbers,

).
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> Examples: 1,2,7r,e,—112,%,...
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Vectors

» A vector is a 1D array of numbers.

> Examples:

» In this course we will mostly use real vectors living in an n
dimensional space:
X1

X2
X =

Xn

> We use x € R"” to denote this.
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> A matrix is a 2D array of numbers.
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> Examples:

-1 9
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» In this course we will mostly use real matrices living in an
m X n dimensional space:

all e diln

a1 ... aon
A=

dmi --- Aamn

Here, m is the number of rows and n is the number of
columns.
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Matrices
> A matrix is a 2D array of numbers.
> Examples:

-1 9

X—B ﬂ y=12 -1/,
5 5

» In this course we will mostly use real matrices living in an
m X n dimensional space:

all e diln

a1 ... aon
A=

dmi --- Aamn

Here, m is the number of rows and n is the number of
columns.
» We use A € R™*" to denote this.
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Tensors

» A tensor is the generalization of the idea of having an array of
numbers.

8/41



Tensors

» A tensor is the generalization of the idea of having an array of
numbers.
> It may be:
» 0D and be a scalar,

8/41



Tensors

» A tensor is the generalization of the idea of having an array of
numbers.
> It may be:

» 0D and be a scalar,
» 1D and be a vector,

8/41



Tensors

» A tensor is the generalization of the idea of having an array of
numbers.
> It may be:

» 0D and be a scalar,
» 1D and be a vector,
» 2D and be a matrix,

8/41



Tensors

» A tensor is the generalization of the idea of having an array of
numbers.
> It may be:

» 0D and be a scalar,
» 1D and be a vector,
» 2D and be a matrix,
» nD and just be an nD tensor.

8/41



Some important matrices - The Indentity Matrix

» A square matrix is a matrix with the same number of rows
and columns, i.e. m = n.
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Some important matrices - The Indentity Matrix

» A square matrix is a matrix with the same number of rows

and columns, i.e. m = n.

» The identity matrix, denoted | € R"*", is a special square
matrix with ones on the diagonal and zeros elsewhere:

1, ifi=j
lij = oL
0, otherwise

> Examples:

100
/:[éﬂ, I=10 1 0},
001

» Its most important property is that for any A € R™*":

Al =A=IA
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Some important matrices - Diagonal Matrices

> A diagonal matrix, denoted D € R"*" is a special square
matrix where all non-diagonal elements are zero:

D; = d; ifi:j. ‘
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Some important matrices - Diagonal Matrices

> A diagonal matrix, denoted D € R"*" is a special square
matrix where all non-diagonal elements are zero:

D; = d; ifi:j. ‘
0, otherwise

> Examples:

1
2 0

/:[ ] =10
05 0

o N O
o O O
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Some important matrices - Diagonal Matrices

> A diagonal matrix, denoted D € R"*" is a special square
matrix where all non-diagonal elements are zero:

D; = d; ifi:j. ‘
0, otherwise

> Examples:

1
2 0

/:[ ] =10
05 0

» These matrices can also be denoted as

o N O

D= diag(dl, d2, ey dn).
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Some important matrices - Diagonal Matrices

> A diagonal matrix, denoted D € R"*" is a special square
matrix where all non-diagonal elements are zero:

D; = d; ifi:j. ‘
0, otherwise

> Examples:

1
2 0

/:[ ] =10
05 0

» These matrices can also be denoted as

o N O

D= diag(dl, d2, ey dn).

» It should also be noted that / = diag(1,1,...,1).
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Vector-Vector Products

» The inner product (or dot product) between two vectors:

z]

T 22 .

X z:[xl Xo - X,,] ) :E X Z;.
' i=1
Zn
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Vector-Vector Products

» The inner product (or dot product) between two vectors:

z]

T 22 .

X z:[xl Xo - X,,] ) :E X Z;.
' i=1
Zn

> Example:
1 3] [a =1x2+3x6=20.
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Vector-Vector Products...

» The outer product between two vectors:

X1 X121
X2 X271

XZT = ) [Zl 22 . e Zn] =
XnZ1

X122
X222

XnZ2

X1Zn
X2Zn

XnZn
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Vector-Vector Products...

» The outer product between two vectors:

X1 X1Z1 X122 ... X1Zp
T X2 X0Z1 XpZp ... X2Zp
Xz = . [21 Zy v Z,,] =
Xn XnZ1 XpnZ2 ... XpZp
> Example:

32 d=[5 ke = e w)
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Matrix-Vector Products

> If we write A in terms of its row vectors, the product Ax can
be expressed as:

—a] — aj x

—a; — a, X
Ax = . X =

—al — a) x
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be expressed as:

—a] — aj x

—a; — a, X
Ax = X =

—al — a) x

P It should be noted that Ax is just a vector whose elements are
the dot products between A’'s row vectors and the vector x.
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Matrix-Vector Products

> If we write A in terms of its row vectors, the product Ax can
be expressed as:

—a] — aj x

—a, — a, X
Ax = X = )

—al — a) x

P It should be noted that Ax is just a vector whose elements are
the dot products between A’'s row vectors and the vector x.

1 4]1[2] [1x2+4x6] [26
4 3] |6] " |[4x2+3x6]  [16]

> Example:
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Matrix-Vector Products (Another view)

» We can also write A in terms of its columns, then we would

have:
X1
. ] 1% | |
Ax = |al a2 a" Tl =lall x4+ |a"] x,
ol |
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Matrix-Vector Products (Another view)

» We can also write A in terms of its columns, then we would

have:
X1
. ] 1% | |
Ax = |al a2 a" = lal| x4+ + [a"| xp
ol |

» In this view, the product is a linear combination of the
columns of A.
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Matrix-Matrix Multiplication

» Let Ac R™<" and B € R"*P,

> If we write A in terms of its row vectors and B in terms of it
column vectors, their multiplication AB can be expressed as:

—a] —
I
AB = _ bt b --- bP
T | |
[ m
[a/ br a/ b - a]bP
Tpl AT p2 T
Tpl 5T p2 T
lamb™ apb® - a,bf
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Matrix-Matrix Multiplication

» Let Ac R™" and B € R"*P,

> If we write A in terms of its row vectors and B in terms of it
column vectors, their multiplication AB can be expressed as:

1
B
AB = _ b* b= --- bP
AR
[a/ br a/ b - a]bP
Tpl T2 T
Tpl T p2 T
lamb™ apb® - a,bf

> Here, AB is just a matrix whose entries are the dots products
between A’s row vectors and B's column vectors.

16 /41



Properties of Matrix-Matrix Multiplication

> Associative: A(BC) = (AB)C.
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Properties of Matrix-Matrix Multiplication

> Associative: A(BC) = (AB)C.
» Distributive: A(B+ C) = AB + AC.
» Not Commutative (in general): AB # BA.
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Matrix Transpose

» Taking the transpose of a matrix corresponds to “flipping” its
rows and columns.
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(A7) = Aji.

19/41



Matrix Transpose

» Taking the transpose of a matrix corresponds to “flipping” its
rows and columns.

» Given an m X n matrix A, its transpose, denoted as AT, is an
n X m matrix whose entries are given by:

(A7) = Aji.

> Example:

1 4 + 13
Sl i ]
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Matrix Transpose

| 2

>

Taking the transpose of a matrix corresponds to “flipping” its
rows and columns.

Given an m x n matrix A, its transpose, denoted as AT, is an
n X m matrix whose entries are given by:

(A7) = Aji.
Example:
|1 4 T |13
SRR
It has the following properties:

> (A1) = A
» (AB)T =BTAT
> (A+B)T=AT +BT
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Matrix Trace

» The trace of a square matrix A € R"*" is the sum of its
diagonal elements:

TF(A) = Zn: A,','.
i=1
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Matrix Trace

» The trace of a square matrix A € R"*" is the sum of its
diagonal elements:

TF(A) = Zn: A,','.
i=1

> Example:

1 4
A_[3 5], TrH(A)=1+5=6.
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Matrix Trace

» The trace of a square matrix A € R"*" is the sum of its
diagonal elements:

TF(A) = Zn: A,','.
i=1

> Example:

1 4
A_[3 5], TrH(A)=1+5=6.

» It has the following properties (assuming B € R™"):
> Tr(A) = Tr(AT).
> Tr(A+ B) = Tr(A) + Tr(B).
> Tr(AB) = Tr(BA).
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Vector Norms

» Informally, the norm of a vector x € R”, denoted ||x]||, is a
measure of how “large” it is.
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Vector Norms
» Informally, the norm of a vector x € R”, denoted ||x]||, is a
measure of how “large” it is.

» Formally, it is any function f : R” — R that satisfies certain
properties?.

1See page 10 of CS229's Linear Algebra Review for these properties.
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Vector Norms

» Informally, the norm of a vector x € R”, denoted ||x]||, is a
measure of how “large” it is.
» Formally, it is any function f : R” — R that satisfies certain
properties?.
» Commonly used norms are as follows:
» Eucledean or ¢; norm (most popular):

> /1 norm:

n
Xl = Ixil-
i=1

1See page 10 of CS229's Linear Algebra Review for these properties.
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Vector Norms

» Informally, the norm of a vector x € R”, denoted ||x]||, is a

measure of how “large” it is.

» Formally, it is any function f : R” — R that satisfies certain

properties?.
» Commonly used norms are as follows:
» Eucledean or ¢; norm (most popular):

> /1 norm:

[Ix[[x

n
> Ixil.
i=1

» (. norm:

] = max x|

1See page 10 of CS229's Linear Algebra Review for these properties.
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Vector Norms

» All of these norms belong to the family of £, norms,
parameterized by a real number p > 1, which is defined as:

1
n P
el = (z w) |
=1
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Vector Norms

» All of these norms belong to the family of £, norms,
parameterized by a real number p > 1, which is defined as:

1
n P
el = (z w) |
=1

» It should be noted that norms can also be defined for matrices
(Frobenius norm), but they are out of the scope of this
tutorial.
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Linear Independence

> A set of vectors X = {x1,x2,...xm} C R" are called linearly
dependent if any one of them can be represented as a linear
combination of the others:

Xk = E CiXi,

X €X—{xx}

where 1 < k< mand ¢; € R.
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Linear Independence

> A set of vectors X = {x1,x2,...xm} C R" are called linearly
dependent if any one of them can be represented as a linear
combination of the others:

Xk = E CiXi,

X €X—{xx}

where 1 < k< mand ¢; € R.
» Otherwise, they are called linearly independent.

> Example:
1 0 0
X1 = 0 y X2 = 1 N X3 = 0 ,
0 0 1

are linearly independent vectors as any linear combination of
the two of them can't give the other.
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Matrix Rank

» The column rank of a matrix A € R™*" is the size of the
largest subset of column vectors of A that constitute a linearly
independent set.
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largest subset of column vectors of A that constitute a linearly
independent set.
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» For any matrix A € R™*" these two are equal. So, both of
them are collectively referred to as the rank of a A, and are
denoted as rank(A).
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Matrix Rank

» The column rank of a matrix A € R™*" is the size of the
largest subset of column vectors of A that constitute a linearly
independent set.

» The row rank is the same thing, except for the row vectors of
A.

» For any matrix A € R™*" these two are equal. So, both of
them are collectively referred to as the rank of a A, and are
denoted as rank(A).

» Properties:

> rank(A) < min(m, n).

> If rank(A) = min(m, n), A is called full rank.

> rank(A) = rank(AT).

» For more see page 11 of CS229’s Linear Algebra Review.
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» The inverse of a square matrix A € R"*" is denoted as A~!
and is unique such that:

ATA=1=AA1
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non-invertible (or singular) otherwise.
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The Inverse of a Square Matrix

» The inverse of a square matrix A € R"*" is denoted as A~!
and is unique such that:

ATA=1=AA1

» A is called invertible (or non-singular) if A~1 exists, and
non-invertible (or singular) otherwise.
» In order for A~1 to exist, A must be full rank.
» Properties:
> (A ) 1=A
> (AB)~!=B-1A"1.
» (Afl)T — (AT)fl_

25 /41



Orthogonal Matrices

» Two vectors x € R" and z € R” are orthogonal if x' z = 0.
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> A square matrix U € R"™ " is orthogonal if all of its columns
are orthogonal to each other and are normalized. Its columns
are then referred to as being orthonormal.
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Orthogonal Matrices

» Two vectors x € R" and z € R” are orthogonal if x' z = 0.

v

A vector x € R" is normalized if ||x||2 = 1.

> A square matrix U € R"™ " is orthogonal if all of its columns
are orthogonal to each other and are normalized. Its columns
are then referred to as being orthonormal.

» Properties:
» The inverse of an orthogonal matrix is its transpose:

vltu=1=uu'.

» Multiplying an n dimensional vector with an n x n orthogonal
matrix will not change its Euclidean norm:

1Ux[l2 = [[x]]2-
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Span and Projection

» The span of a set of vectors {x1,x2,...,Xm} is the set of all
vectors that can be expressed as a linear combination of all of
them:

m
span({x1,x2, ..., Xm}) = {v LV = Zc,-x,-, G € R} .
i=1
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Span and Projection

» The span of a set of vectors {x1,x2,...,Xm} is the set of all
vectors that can be expressed as a linear combination of all of
them:

m
span({x1,x2, ..., Xm}) = {v LV = Zc,-x,-, G € R} .

i=1
» The projection of a vector z € RP onto the span of
{x1,Xx2,...,Xm} is the vector v € span({x1,x2,...,Xm}), such
that v is as close as possible to z, as measure by the

Euclidean norm ||v — z||2:

Proj(z; {X17X27 e aXm}) = arg minszpan({xl,xg,...,xm}) ||V - ZH2'
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Range and Nullspace of a Matrix

» The range of the columnspace of the matrix A € R™*",
denoted as R(A), is the span of the columns of A.

R(A)={veR":v=Ax,xeR"}
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Range and Nullspace of a Matrix

» The range of the columnspace of the matrix A € R™*",
denoted as R(A), is the span of the columns of A.

R(A)={veR":v=Ax,xeR"}

» The nullspace of a matrix A € R™*", denoted as N(A), is
the set of all vectors that equal to 0 when multiplied by A:

N(A)={x eR": Ax =0}.
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The Determinant of a Matrix

» The determinant of a square matrix A € R"™" is a function
det : R"™*" — R, and it is denoted as:

|Al or det(A).
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The Determinant of a Matrix

» The determinant of a square matrix A € R"™" is a function
det : R"™*" — R, and it is denoted as:

|Al or det(A).

> Let A_;_; € R(=1)x(n=1) he the matrix that results from
deleting the ith row and jth column of matrix A.
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The Determinant of a Matrix
» The determinant of a square matrix A € R"™" is a function
det : R"™*" — R, and it is denoted as:

|Al or det(A).

> Let A_;_; € R(=1)x(n=1) he the matrix that results from
deleting the ith row and jth column of matrix A.

» Then the determinant can algebraically be computed with the
following recursive formula:

|A| = Z(—l)i+jaU|A,;,j| (forany j€1,...,n)
i—1
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The Determinant of a Matrix
» The determinant of a square matrix A € R"™" is a function
det : R"™*" — R, and it is denoted as:

|Al or det(A).

> Let A_;_; € R(=1)x(n=1) he the matrix that results from
deleting the ith row and jth column of matrix A.

» Then the determinant can algebraically be computed with the
following recursive formula:

|A| = Z(—l)i+jaU|A,;,j| (forany j€1,...,n)
i—1

» However, this formula has too many terms for matrices bigger
than 3 x 3. Thus for big matrices people hardly ever use it.
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The Determinant of a Matrix

» The determinant of a square matrix A € R"™" is a function
det : R"™*" — R, and it is denoted as:

|Al or det(A).

> Let A_;_; € R(=1)x(n=1) he the matrix that results from
deleting the ith row and jth column of matrix A.

» Then the determinant can algebraically be computed with the
following recursive formula:

|A| = Z(—l)i+jaU|A,;,j| (forany j€1,...,n)
i—1

» However, this formula has too many terms for matrices bigger
than 3 x 3. Thus for big matrices people hardly ever use it.

» The determinant has a much more intuitive geometric
interpretation however. See the the video on determinants in
3BluelBrown's “Essence of LA".

29 /41


https://www.youtube.com/watch?v=Ip3X9LOh2dk&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=6
https://www.youtube.com/watch?v=Ip3X9LOh2dk&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=6

The Determinant of a Matrix...

> Example:

21
A—[3 5], [Al=2x5—-1x3=7
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The Determinant of a Matrix...

> Example:
2 1
A_[B; 5], [Al=2x5—-1x3=7

» Let Ac R"™" and B € R™".
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The Determinant of a Matrix...

> Example:

21
A_[B; 5], [Al=2x5—-1x3=7

> Let Ae R™" and B € R"™",
» Properties:
> A=|AT|
> |AB| = |A]|B|.
> |A| if and only if A is non-invertable.
» For more see page 14 of CS5229's Linear Algebra Review.
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Quadratic Forms

» Given a square matrix A € R"™" and a vector x € R”, the
scalar x " Ax is called a quadratic form, and can explicitly be
written as:

n

xTAx = ZX,’(AX),‘ = ix,- iA’JXJ = i iAinin-
i=1 j=1

i=1 i=1 j=1
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Positive Semidefinite Matrices

> A symmetric matrix A € S” is:
> Positive Definite (PD) if for all nonzero vectors x € R", we
have:
x"Ax > 0.
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Positive Semidefinite Matrices
> A symmetric matrix A € S” is:
> Positive Definite (PD) if for all nonzero vectors x € R", we

have:
xTAx > 0.

> Positive Semidefinite (PSD) if for all vectors x € R", we

have:
xTAx > 0.

> Negative Definite (ND) if for all nonzero vectors x € R", we

have:
xTAx < 0.

> Negative Semidefinite (NSD) if for all vectors x € R", we
have:
xTAx <0.
» An important property of PD and ND matrices is that they
are always full rank, and hence, invertible.
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Eigenvalues and Eigenvectors

> Given a square matrix A € R™" we say that A € C is an
eigenvalue of A and x € R” is the corresponding
eigenvector if:
Ax = Ax, x#0.
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Eigenvalues and Eigenvectors

> Given a square matrix A € R™" we say that A € C is an
eigenvalue of A and x € R” is the corresponding

eigenvector if:
Ax = Ax, x#0.

» Intuitively, this definition means that eigenvectors are special
vectors that when multiplied by A, they just get scaled by a
factor of A (without its direction getting changed).
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Finding the Eigenvalues and Eigenvectors

» The equation in the previous slide can be written as:

(M —=A)x=0, x#0.
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Finding the Eigenvalues and Eigenvectors

» The equation in the previous slide can be written as:

(M —=A)x=0, x#0.

» For this equation to have a solution, (A/ — A) should have a
nonempty nullspace, which is only the case if (A\/ — A) is not
invertible. That is it should have determinant of zero:

(M — A)] = 0.

» This equation can be expanded into a polynomial in A with a
degree of n. This polynomial is called the characteristic
equation of A and its solution gives the eigenvalues.

> After obtaining the eigenvalues, the eigenvectors can easily be
obtained by plugging the X values to the equation at the top
of this slide.
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Properties of Eigenvalues and Eigenvectors

» The trace of A is equal to the sum of its eigenvalues:

Tr(A) = zn: A
i=1
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Properties of Eigenvalues and Eigenvectors

» The trace of A is equal to the sum of its eigenvalues:
n
Tr(A) =D\
i=1
» The determinant of A is equal to the product of its

eigenvalues:
n
A= >
i=1

» The rank of A is equal to the number of nonzero eigenvalues
of A.

» The eigenvalues of a diagonal matrix D = diag(di, da, ..., dy)
are just its diagonal entries.

» For more see page 19 of CS5229's Linear Algebra Review.
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Eigenvalues and Eigenvectors of Symmetric Matrices

» In general, the structures of the eigenvalues and eigenvectors
of a general square matrix can be subtle to characterize.
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Eigenvalues and Eigenvectors of Symmetric Matrices
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» Fortunately, in most of the cases in machine learning, it
suffices to deal with symmetric real matrices, whose
eigenvalues and eigenvectors have remarkable properties.
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Eigenvalues and Eigenvectors of Symmetric Matrices

» In general, the structures of the eigenvalues and eigenvectors
of a general square matrix can be subtle to characterize.

» Fortunately, in most of the cases in machine learning, it
suffices to deal with symmetric real matrices, whose
eigenvalues and eigenvectors have remarkable properties.

» However, for the sake of the brevity of the tutorial we will not
go into the details of this special case. For more details on
this see pages 19-22 of CS229's Linear Algebra Review.
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Outline

Linear Algebra

Matrix Calculus
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The Gradient

» Suppose that f : R” — R is a function that takes as input a
vector x € R" and and returns a scalar value. Then the
gradient of f with respect to x is the vector of partial
derivatives:

6f/8x1
of /0x;
Vo f(x) = / 2

Of /Oxp
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The Gradient

» Suppose that f : R” — R is a function that takes as input a
vector x € R" and and returns a scalar value. Then the
gradient of f with respect to x is the vector of partial
derivatives:

6f/8x1
of /0x;
Vo f(x) = / 2

Of /Oxp
» Note that the size of V.f(x) is always the same size of x.

» Properties:

> Vi(f(x) +8(x)) = Vif(x) + Vig(x).
> For c € R, Vi(cf(x)) = cVif(x)
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The Hessian

» Suppose that f : R” — R is a function that takes as input a
vector x € R"” and and returns a scalar value. Then the
Hessian of f with respect to x is a n X n matrix of partial

derivatives:
O*fJOx2  O*f)0x10xx -+ O%*f/0x10xy
V2F(x) = 82f/(9.x28x1 82f(8x22 82f/<?x28xn
0f/ éx,,f)xl 0f/ 5x,,8x2 . .. . O*f / Ox?
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The Hessian

» Suppose that f : R” — R is a function that takes as input a
vector x € R"” and and returns a scalar value. Then the
Hessian of f with respect to x is a n X n matrix of partial

derivatives:
O*fJOx2  O*f)0x10xx -+ O%*f/0x10xy
V2F(x) = 82f/(9.x28x1 82f(8x22 82f/<?x28xn
0f/ éx,,f)xl 0f/ 5x,,8x2 . .. . O*f / Ox?

» Note that the Hessian is always symmetric as:

Pf 0F
Oxi0xj  Oxj0x;
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For more on Matrix Calculus

» If not familiar with these concepts, try going over the exercises
of taking the gradients and Hessians of linear and quadratic
functions in pages 26-27 of C5229's Linear Algebra Review.
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For more on Matrix Calculus

» If not familiar with these concepts, try going over the exercises
of taking the gradients and Hessians of linear and quadratic
functions in pages 26-27 of C5229's Linear Algebra Review.

» Also for more details on

P |east squares
» gradients of the determinant
P eigenvalues and optimization

see pages 27-29 of CS5229's Linear Algebra Review.
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References

» This tutorial is mainly adapted from Stanford’'s CS229 Linear
Algebra Review. However, it doesn’t give all the details. For
the details please refer to this source.

» Here are a couple of good references that you might want to
check out:

» 3BluelBrown’s “Essence of Linear Algebra”
» The legendary Gilbert Strang's Linear Algebra Course
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