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About this tutorial

I This is not an comprehensive review of Linear Algebra.

I The focus is on the subset related to COMP 551.

I More references can be found at the end of the slides.

I Also please shoot me an email if you find any typos or
mistakes!
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Scalars

I A scalar is just a single number (integers, rational numbers,
. . . ).

I Examples: 1, 2, π, e,−112, 14 , . . .
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Vectors

I A vector is a 1D array of numbers.

I Examples:

x =

[
1
2

]
, y =


−1
2
5
6

 , . . .

I In this course we will mostly use real vectors living in an n
dimensional space:

x =


x1
x2
...
xn

 .
I We use x ∈ Rn to denote this.
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Matrices
I A matrix is a 2D array of numbers.

I Examples:

X =

[
1 3
2 7

]
, Y =

−1 9
2 −1
5 5

 , . . .

I In this course we will mostly use real matrices living in an
m × n dimensional space:

A =


a11 . . . a1n
a21 . . . a2n

...
...

...
am1 . . . amn

 .
Here, m is the number of rows and n is the number of
columns.

I We use A ∈ Rm×n to denote this.
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Tensors

I A tensor is the generalization of the idea of having an array of
numbers.

I It may be:
I 0D and be a scalar,
I 1D and be a vector,
I 2D and be a matrix,
I nD and just be an nD tensor.
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Some important matrices - The Indentity Matrix
I A square matrix is a matrix with the same number of rows

and columns, i.e. m = n.

I The identity matrix, denoted I ∈ Rn×n, is a special square
matrix with ones on the diagonal and zeros elsewhere:

Iij =

{
1, if i = j

0, otherwise
.

I Examples:

I =

[
1 0
0 1

]
, I =

1 0 0
0 1 0
0 0 1

 , . . .

I Its most important property is that for any A ∈ Rn×n:

AI = A = IA.
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Some important matrices - Diagonal Matrices
I A diagonal matrix, denoted D ∈ Rn×n is a special square

matrix where all non-diagonal elements are zero:

Dij =

{
di , if i = j

0, otherwise
.

I Examples:

I =

[
2 0
0 5

]
, I =

−1 0 0
0 7 0
0 0 9

 , . . .

I These matrices can also be denoted as

D = diag(d1, d2, . . . , dn).

I It should also be noted that I = diag(1, 1, . . . , 1).
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Vector-Vector Products

I The inner product (or dot product) between two vectors:

x>z =
[
x1 x2 · · · xn

]

z1
z2
...
zn

 =
n∑

i=1

xizi .

I Example: [
1 3

] [2
6

]
= 1× 2 + 3× 6 = 20.
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Vector-Vector Products...

I The outer product between two vectors:

xz> =


x1
x2
...
xn

 [z1 z2 · · · zn
]

=


x1z1 x1z2 . . . x1zn
x2z1 x2z2 . . . x2zn

...
...

...
...

xnz1 xnz2 . . . xnzn

 .

I Example: [
1
3

] [
2 6

]
=

[
1× 2 1× 6
3× 2 3× 6

]
=

[
2 6
6 18

]
.
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Matrix-Vector Products

I If we write A in terms of its row vectors, the product Ax can
be expressed as:

Ax =


a>1
a>2
...
a>m

 x =


a>1 x
a>2 x

...
a>mx

 .

I It should be noted that Ax is just a vector whose elements are
the dot products between A’s row vectors and the vector x .

I Example: [
1 4
4 3

] [
2
6

]
=

[
1× 2 + 4× 6
4× 2 + 3× 6

]
=

[
26
16

]
.
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Matrix-Vector Products (Another view)

I We can also write A in terms of its columns, then we would
have:

Ax =

a1 a2 · · · an



x1
x2
...
xn

 =

a1
 x1 + · · ·+

an
 xn.

I In this view, the product is a linear combination of the
columns of A.
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Matrix-Matrix Multiplication

I Let A ∈ Rm×n and B ∈ Rn×p.

I If we write A in terms of its row vectors and B in terms of it
column vectors, their multiplication AB can be expressed as:

AB =


a>1
a>2
...
a>m


b1 b2 · · · bp



=


a>1 b

1 a>1 b
2 · · · a>1 b

p

a>2 b
1 a>2 b

2 · · · a>2 b
p

...
...

...
...

a>mb
1 a>mb

2 · · · a>mb
p

 .

I Here, AB is just a matrix whose entries are the dots products
between A’s row vectors and B’s column vectors.
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Properties of Matrix-Matrix Multiplication

I Associative: A(BC ) = (AB)C .

I Distributive: A(B + C ) = AB + AC .

I Not Commutative (in general): AB 6= BA.
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Matrix Transpose

I Taking the transpose of a matrix corresponds to “flipping” its
rows and columns.

I Given an m × n matrix A, its transpose, denoted as A>, is an
n ×m matrix whose entries are given by:

(A>)ij = Aji .

I Example:

A =

[
1 4
3 5

]
, A> =

[
1 3
4 5

]
.

I It has the following properties:
I (A>)> = A
I (AB)> = B>A>

I (A + B)> = A> + B>
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Matrix Trace

I The trace of a square matrix A ∈ Rn×n is the sum of its
diagonal elements:

Tr(A) =
n∑

i=1

Aii .

I Example:

A =

[
1 4
3 5

]
, Tr(A) = 1 + 5 = 6.

I It has the following properties (assuming B ∈ Rn×n):
I Tr(A) = Tr(A>).
I Tr(A + B) = Tr(A) + Tr(B).
I Tr(AB) = Tr(BA).
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Vector Norms
I Informally, the norm of a vector x ∈ Rn, denoted ||x ||, is a

measure of how “large” it is.

I Formally, it is any function f : Rn → R that satisfies certain
properties1.

I Commonly used norms are as follows:
I Eucledean or `2 norm (most popular):

||x ||2 =

√√√√ n∑
i=1

x2i .

I `1 norm:

||x ||1 =
n∑

i=1

|xi |.

I `∞ norm:
||x ||∞ = max

i
|xi |.

1See page 10 of CS229’s Linear Algebra Review for these properties.
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Vector Norms

I All of these norms belong to the family of `p norms,
parameterized by a real number p ≥ 1, which is defined as:

||x ||p =

(
n∑

i=1

|xi |p
) 1

p

.

I It should be noted that norms can also be defined for matrices
(Frobenius norm), but they are out of the scope of this
tutorial.

22 / 41
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Linear Independence

I A set of vectors X = {x1, x2, . . . xm} ⊂ Rn are called linearly
dependent if any one of them can be represented as a linear
combination of the others:

xk =
∑

xi∈X−{xk}

cixi ,

where 1 ≤ k ≤ m and ci ∈ R.

I Otherwise, they are called linearly independent.

I Example:

x1 =

1
0
0

 , x2 =

0
1
0

 , x3 =

0
0
1

 ,
are linearly independent vectors as any linear combination of
the two of them can’t give the other.
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the two of them can’t give the other.
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Matrix Rank

I The column rank of a matrix A ∈ Rm×n is the size of the
largest subset of column vectors of A that constitute a linearly
independent set.

I The row rank is the same thing, except for the row vectors of
A.

I For any matrix A ∈ Rm×n, these two are equal. So, both of
them are collectively referred to as the rank of a A, and are
denoted as rank(A).

I Properties:
I rank(A) ≤ min(m, n).
I If rank(A) = min(m, n), A is called full rank.
I rank(A) = rank(A>).
I For more see page 11 of CS229’s Linear Algebra Review.
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The Inverse of a Square Matrix

I The inverse of a square matrix A ∈ Rn×n is denoted as A−1

and is unique such that:

A−1A = I = AA−1.

I A is called invertible (or non-singular) if A−1 exists, and
non-invertible (or singular) otherwise.

I In order for A−1 to exist, A must be full rank.
I Properties:

I (A−1)−1 = A.
I (AB)−1 = B−1A−1.
I (A−1)> = (A>)−1.
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Orthogonal Matrices

I Two vectors x ∈ Rn and z ∈ Rn are orthogonal if x>z = 0.

I A vector x ∈ Rn is normalized if ||x ||2 = 1.

I A square matrix U ∈ Rn×n is orthogonal if all of its columns
are orthogonal to each other and are normalized. Its columns
are then referred to as being orthonormal.

I Properties:
I The inverse of an orthogonal matrix is its transpose:

U>U = I = UU>.

I Multiplying an n dimensional vector with an n × n orthogonal
matrix will not change its Euclidean norm:

||Ux ||2 = ||x ||2.
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Span and Projection

I The span of a set of vectors {x1, x2, . . . , xm} is the set of all
vectors that can be expressed as a linear combination of all of
them:

span({x1, x2, . . . , xm}) =

{
v : v =

m∑
i=1

cixi , ci ∈ R

}
.

I The projection of a vector z ∈ Rp onto the span of
{x1, x2, . . . , xm} is the vector v ∈ span({x1, x2, . . . , xm}), such
that v is as close as possible to z , as measure by the
Euclidean norm ||v − z ||2:

Proj(z ; {x1, x2, . . . , xm}) = arg minv∈span({x1,x2,...,xm}) ||v − z ||2.

27 / 41



Span and Projection

I The span of a set of vectors {x1, x2, . . . , xm} is the set of all
vectors that can be expressed as a linear combination of all of
them:

span({x1, x2, . . . , xm}) =

{
v : v =

m∑
i=1

cixi , ci ∈ R

}
.

I The projection of a vector z ∈ Rp onto the span of
{x1, x2, . . . , xm} is the vector v ∈ span({x1, x2, . . . , xm}), such
that v is as close as possible to z , as measure by the
Euclidean norm ||v − z ||2:

Proj(z ; {x1, x2, . . . , xm}) = arg minv∈span({x1,x2,...,xm}) ||v − z ||2.

27 / 41



Range and Nullspace of a Matrix

I The range of the columnspace of the matrix A ∈ Rm×n,
denoted as R(A), is the span of the columns of A.

R(A) = {v ∈ Rm : v = Ax , x ∈ Rn}

I The nullspace of a matrix A ∈ Rm×n, denoted as N (A), is
the set of all vectors that equal to 0 when multiplied by A:

N (A) = {x ∈ Rn : Ax = 0}.
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The Determinant of a Matrix
I The determinant of a square matrix A ∈ Rn×n is a function

det : Rn×n → R, and it is denoted as:

|A| or det(A).

I Let A−i−j ∈ R(n−1)×(n−1) be the matrix that results from
deleting the ith row and jth column of matrix A.

I Then the determinant can algebraically be computed with the
following recursive formula:

|A| =
n∑

i=1

(−1)i+jaij |A−i−j | (for any j ∈ 1, . . . , n)

I However, this formula has too many terms for matrices bigger
than 3× 3. Thus for big matrices people hardly ever use it.

I The determinant has a much more intuitive geometric
interpretation however. See the the video on determinants in
3Blue1Brown’s “Essence of LA”.
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The Determinant of a Matrix...

I Example:

A =

[
2 1
3 5

]
, |A| = 2× 5− 1× 3 = 7

I Let A ∈ Rn×n and B ∈ Rn×n.
I Properties:

I A = |A>|.
I |AB| = |A||B|.
I |A| if and only if A is non-invertable.
I For more see page 14 of CS229’s Linear Algebra Review.
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Quadratic Forms

I Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the
scalar x>Ax is called a quadratic form, and can explicitly be
written as:

x>Ax =
n∑

i=1

xi (Ax)i =
n∑

i=1

xi

 n∑
j=1

Aijxj

 =
n∑

i=1

n∑
j=1

Aijxixj .
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Positive Semidefinite Matrices
I A symmetric matrix A ∈ Sn is:

I Positive Definite (PD) if for all nonzero vectors x ∈ Rn, we
have:

x>Ax > 0.

I Positive Semidefinite (PSD) if for all vectors x ∈ Rn, we
have:

x>Ax ≥ 0.

I Negative Definite (ND) if for all nonzero vectors x ∈ Rn, we
have:

x>Ax < 0.

I Negative Semidefinite (NSD) if for all vectors x ∈ Rn, we
have:

x>Ax ≤ 0.

I An important property of PD and ND matrices is that they
are always full rank, and hence, invertible.
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Eigenvalues and Eigenvectors

I Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an
eigenvalue of A and x ∈ Rn is the corresponding
eigenvector if:

Ax = λx , x 6= 0.

I Intuitively, this definition means that eigenvectors are special
vectors that when multiplied by A, they just get scaled by a
factor of λ (without its direction getting changed).
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Finding the Eigenvalues and Eigenvectors
I The equation in the previous slide can be written as:

(λI − A)x = 0, x 6= 0.

I For this equation to have a solution, (λI − A) should have a
nonempty nullspace, which is only the case if (λI − A) is not
invertible. That is it should have determinant of zero:

|(λI − A)| = 0.

I This equation can be expanded into a polynomial in λ with a
degree of n. This polynomial is called the characteristic
equation of A and its solution gives the eigenvalues.

I After obtaining the eigenvalues, the eigenvectors can easily be
obtained by plugging the λ values to the equation at the top
of this slide.
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Properties of Eigenvalues and Eigenvectors

I The trace of A is equal to the sum of its eigenvalues:

Tr(A) =
n∑

i=1

λi .

I The determinant of A is equal to the product of its
eigenvalues:

|A| =
n∏

i=1

λi .

I The rank of A is equal to the number of nonzero eigenvalues
of A.

I The eigenvalues of a diagonal matrix D = diag(d1, d2, . . . , dn)
are just its diagonal entries.

I For more see page 19 of CS229’s Linear Algebra Review.
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Eigenvalues and Eigenvectors of Symmetric Matrices

I In general, the structures of the eigenvalues and eigenvectors
of a general square matrix can be subtle to characterize.

I Fortunately, in most of the cases in machine learning, it
suffices to deal with symmetric real matrices, whose
eigenvalues and eigenvectors have remarkable properties.

I However, for the sake of the brevity of the tutorial we will not
go into the details of this special case. For more details on
this see pages 19-22 of CS229’s Linear Algebra Review.
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The Gradient

I Suppose that f : Rn → R is a function that takes as input a
vector x ∈ Rn and and returns a scalar value. Then the
gradient of f with respect to x is the vector of partial
derivatives:

∇x f (x) =


∂f /∂x1
∂f /∂x2

...
∂f /∂xn

 .

I Note that the size of ∇x f (x) is always the same size of x .
I Properties:

I ∇x(f (x) + g(x)) = ∇x f (x) +∇xg(x).
I For c ∈ R, ∇x(cf (x)) = c∇x f (x)
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The Hessian

I Suppose that f : Rn → R is a function that takes as input a
vector x ∈ Rn and and returns a scalar value. Then the
Hessian of f with respect to x is a n × n matrix of partial
derivatives:

∇2
x f (x) =


∂2f /∂x21 ∂2f /∂x1∂x2 · · · ∂2f /∂x1∂xn

∂2f /∂x2∂x1 ∂2f /∂x22 · · · ∂2f /∂x2∂xn
...

...
...

...
∂2f /∂xn∂x1 ∂2f /∂xn∂x2 . . . ∂2f /∂x2n

 .

I Note that the Hessian is always symmetric as:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.
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For more on Matrix Calculus

I If not familiar with these concepts, try going over the exercises
of taking the gradients and Hessians of linear and quadratic
functions in pages 26-27 of CS229’s Linear Algebra Review.

I Also for more details on
I least squares
I gradients of the determinant
I eigenvalues and optimization

see pages 27-29 of CS229’s Linear Algebra Review.
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References

I This tutorial is mainly adapted from Stanford’s CS229 Linear
Algebra Review. However, it doesn’t give all the details. For
the details please refer to this source.

I Here are a couple of good references that you might want to
check out:
I 3Blue1Brown’s “Essence of Linear Algebra”
I The legendary Gilbert Strang’s Linear Algebra Course
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